
Tools and techniques for
model building

A presentation by Russell Milne

Before I begin, a few notes on applied math

• By definition, applied math is applied, which means that it is used to
solve real-world problems

• Because there’s lots of data now, a lot of contemporary mathematical
applications involve working with data

• If you’re using math in the real world, it helps to have a large toolbox
and know the right tool for the job

• Sufficiently applied math is often indistinguishable from engineering
or computer science

• New math is constantly being developed to fit needs. Applied math is
much quicker in this regard than pure math

Necessity is the mother of invention

• Wavelets: developed during the ‘80s (Morlet, Daubechies, Cazelles, etc.)
• Lasso method: Santosa and Symes 1986, Tibshirani 1996
• Boosting: Kearns and Valiant 1989, Freund and Schapire 1995
• Local Getis-Ord statistic: Getis and Ord 1992, 1995
• Random forest: Heath et al. 1993, Ho 1995
• Synthetic Minority Oversampling TEchnique: Chawla et al. 2002
• t-SNE: 2024 Nobel winner Geoffrey Hinton and collaborators (2002, 2008)
• U-Net: Ronneberger et al. 2015
• SINDy: University of Washington team 2016; refinement ongoing
• Shapley Additive exPlanations: Lundberg and Lee 2017
• Time series counterfactuals: development ongoing (currently active)

A quick background on Python, in case you’re
not already familiar with it
• Programming language often

used for ML and data science
applications

• Created by CS people rather
than mathematicians; indices
start with 0

• Free to use; Jupyter Lab is a
good GUI implementation

• Many, many useful packages
(e.g. SciPy, Pandas, Matplotlib)

What if you have a lot of different
objects and want to find out
which ones are similar?
Single-linkage clustering, k-means, expectation-maximization

What is cluster analysis?

• Essentially a way of grouping
similar objects together

• Generally works by initializing
some number of clusters and
then assigning objects to one (or
more) of the clusters

• Good if you have a lot of objects
and manually doing pairwise
comparisons would be a hassle

FYI: two classic datasets (Fisher Iris and
MNIST) that will come up later

Single-linkage clustering

• Simple, intuitive clustering
method based on repeatedly
joining nearby clusters together

• Hierarchical clustering algorithm,
meaning that you can use it to
create dendrograms

• Sometimes called the “friends of
friends” algorithm, in reference
to its method of joining clusters

Simple SLC algorithm: setup

• Suppose we have n objects and know the pairwise distances between
them, using a distance metric d.

• Start with n clusters, i.e. each cluster contains exactly one object. This
means that at the beginning, the distances between clusters will be
the same as the distances between objects.

• Store the distances between clusters in a square matrix M, and keep
track of which cluster each object is in in a vector v. This can be done
by assigning each initial cluster a number. (A convenient way to do
this would be to use the clusters’ row and column indices in M.)

Simple SLC algorithm: running the algorithm

• Find the lowest distance between two clusters. These two clusters, which we will
call a and b, will be merged into one bigger cluster. Make note of the cluster
numbers associated with a and b; we’ll need these later.

• The merged clusters a and b are now considered to be one cluster. In the row of
M containing the distances from a to the other clusters, if d(a,x) > d(b,x) for some
cluster x, then set d(a,x) = d(b,x).

• Do the same thing for the column corresponding to distances from a.

• After all this, set d(b,x) to NaN (or some extremely high number) for all x, to
reflect the fact that cluster b no longer exists.

• We still need to update the entries in v to reflect that all objects in cluster b are
now part of cluster a. For all entries in v whose value is the cluster number of b,
change this to the cluster number of a.

• Repeat these steps until you have your desired number of clusters.

Dendrograms

• Single-linkage clustering can also
be used to create dendrograms

• Here, each initial object can be
considered a node of a graph

• In the previous algorithm, when a
and b are merged, the distance
between a (or b) and the node that
joins the two is d(a,b)/2

• Continuing the algorithm until only
one cluster remains, while joining
nodes at each step, produces the
dendrogram

k-means clustering

• This is a method that clusters
vectors by their distance to each
of k different cluster means (not
part of the original dataset)

• It works by creating a Voronoi
diagram out of the vector space

• Hence, k-means splits along
straight lines and generates
convex clusters

How k-means works

• Two steps: assignment, update

• To start, initialize k different
cluster means as seed values
(k-means++ is good for this)

• 1: Assign all vectors to a cluster
based on which cluster mean
they are closest to

• 2: Calculate the mean location of
all vectors in each cluster; use
these as the new cluster means.
Repeat until convergence.

Expectation-maximization: a probabilistic
clustering algorithm
• EM is a way to find properties of

a distribution that some data is
assumed to be drawn from

• This means that it can be used to
create Gaussian mixture models,
where each Gaussian can be
considered as a cluster

• Using it this way makes it a
version of k-means in which
vectors are assigned to clusters
probabilistically

How to use EM

• At the outset, initialize k different
multivariate Gaussian distributions
(these are your priors)

• Expectation step: For each vector,
find the likelihood that that vector
belongs to each distribution

• Maximization step: Given this
distribution membership data,
recalculate the mean and variances
of each distribution

What if you already know which
categories your objects fall into,
but want to classify new objects?
Support vector machine, decision trees

The support vector machine

• Given some data that is classified
into two categories, a SVM will
produce an equation separating
the categories

• Specifically, a SVM creates a
hyperplane (a higher-dimensional
analogue of a line or a plane)

• The chosen hyperplane maximizes
the gap between instances of the
two categories

• New objects can be classified
based on which side of the
hyperplane they fall on

Separating categories by using dimensionality
to our advantage (the “kernel trick”)
• SVMs can distinguish categories that are linearly separable, since hyperplanes are linear

• However, you can find nonlinear boundaries by implicitly calculating more dimensions

• This is done by defining an inner product on the vectors in your dataset

SVMs can be hard or soft

• Categories that are linearly
separable (“hard margin”) can
always be separated by a SVM

• If the categories cannot be
linearly separated (“soft
margin”), a loss function is
required to select a hyperplane

• In such a case, we want a
hyperplane that does the best
job at classification rather than a
perfect job

The hinge loss function for soft SVMs

• Hinge loss, i.e. f(x) = max(0, 1-x) or
smoothed versions, is commonly
used to quantify SVM error

• For points on the correct side of
the hyperplane with enough
margin, the hinge loss function
takes the value 0

• For points on the wrong side of the
hyperplane (i.e. separated from
their category), the hinge loss
function scales with distance to the
hyperplane

Decision trees

• A decision tree is a graph that takes
an object as input, and has
branching paths that ask questions
about the object

• Following a path until the end
yields a decision about the object

• Decision trees can use classification
(where objects are assigned to
discrete categories at the end) or
regression (which instead have a
continuous response variable)

ML can be used to create decision trees

• This is done by repeatedly
partitioning a dataset according to
rules produced by a ML algorithm

• First the entire dataset is divided
(thus making the first decision
branches), then each subset
created by this decision is itself
divided, et cetera

• Trees that are too complex may
induce overfitting; this can be
addressed using ensemble
methods like bagging or boosting

Having multiple trees can address the risk of
overfitting
• Trees can be aggregated in a

“random forest”, where the mean
prediction made by all trees in the
forest is adopted by the model

• The random forest algorithm uses
bagging (bootstrap aggregation) to
induce randomness at two
different stages

• Each tree in the forest is trained on
a random subset of the data, and
the features that the tree uses for
classification are chosen randomly

How a random forest is constructed

• Sample available training
data with replacement to
build a dataset for
creating one tree

• Sample features with
replacement to choose
which feature each step
in the tree will use to
split the data

• Do this many times to
produce lots of trees

Boosting: another way to get more accurate
predictions from decision trees
• Boosting assembles a strong

classifier from many weak ones in a
sequential training process

• To use boosting with decision
trees, we first create a simple tree
trained on the observations in our
dataset (often with only one step)

• We then use the residuals or loss
function gradients of this tree to
train the next tree, and so on until
we have enough trees to aggregate

• This process allows us to correct
mistakes made by previous trees

How boosting works in schematic form

What if you have high-
dimensional data and want to
better visualize its structure?
Principal component analysis, t-distributed stochastic neighbour embedding

A brief word about scale in datasets

• If you have a lot of different
features in a dataset, they might be
on different scales

• Suppose you have two features
that take values {1,2,3,4,5} and
{100,200,300,400,500}

• Feature importance algorithms
might place far more weight on the
second of those two features, even
though it has the same relative
structure as the first

How can we fix this?

• Normalization scales a feature’s
minimum value to 0 and its
maximum value to 1

• Another method is converting
feature values into Z-scores

• The Z-score of a value in a
distribution is how many
standard deviations it is away
from the mean

Principal component analysis

• If you have a really big dataset,
some of its features might be
correlated with each other

• PCA works by transforming data
onto orthogonal axes (“principal
components”)

• Each principal component is an
eigenvector of the matrix of
covariates between features

• Hence, the principal components
are linear combinations of the
original features

How many principal components are
necessary to describe data?
• Usually, the first few principal

components capture most of the
variance in the data (so most can
be dropped)

• One way to tell is by looking at a
scree plot of explained variance
and using the “elbow method”
(finding a place where the scree
plot bends, or has a sizable gap
between successive components)

• Draw a line from the first point in
the scree plot to the last one. The
point farthest away from this line is
a good guess

PCA can
uncover
big-picture
patterns in
data

t-distributed stochastic neighbour embedding

• t-SNE is a method for visualizing
high-dimensional data (e.g.
MNIST), and a de facto clustering
algorithm

• It works by finding the likelihood
that each object would choose
each other object as a
neighbour, based on weighted
distance functions

• There’s an implementation of it
in scikit-learn (in Python)

Quirks of t-SNE

• It can form clusters that are
nonlinearly separated in high-
dimensional space

• Its axes have no meaning, so
neither do the sizes of the clusters
or the distances between them

• It’s non-deterministic (different
runs give different results)

• Hyperparameters: “perplexity” is
sort of like the desired number of
neighbours for each point; epsilon
is t-SNE’s learning rate

What if you want to do further
analysis on your data, but it’s split
into imbalanced categories?
SMOTE

Why are imbalanced datasets a problem?

• Sometimes, an event of interest
occurs very rarely, and training
data for a model may have very
few instances of it occurring but
many of it not occurring

• In such cases, null models (e.g.
“nobody ever commits credit
card fraud”, “nobody ever gets
this rare form of cancer”) may
have high predictive power
despite being useless or harmful

A solution: Synthetic Minority Oversampling
TEchnique (SMOTE)
• SMOTE creates new observations

by taking linear combinations of
existing observations in the class
with fewer members

• This is done to observations that
are close enough together that the
linear combinations of them will
still be in the minority class

• The idea is to make perturbations
to data points in the minority class,
so we get new points rather than
resampling the existing ones

That’s all for today

What if you already have a cluster
of points, and want to see which
ones are the most prominent?
Local Getis-Ord statistic

Hot spots and cold spots

• Suppose you have some
observations that are joined
together in a network, for
example an adjacency matrix
(for spatial data)

• A hot spot is where several
observations with high values of
a variable of interest are close
together in the network; likewise
for cold spots and low values

The local Getis-Ord statistic: a method for
quantifying hot and cold spots

Hot spots often come up if you’re doing
anything with spatial data
• A common application of local

Getis-Ord is to find out whether a
variable of interest is abnormally
high or low across some region

• This makes it very common in
applications involving satellite
imagery and/or GIS data

• It can be used on any kind of mesh
connecting local observation
points, even unusual ones such as a
lakeshore (i.e. circle-shaped graph)

What if you have a few different
features and want to see which
ones are important?
Lasso method, Shapley values

Sparse regression

• Suppose we’re doing a
regression (linear or otherwise),
and we have a lot of variables

• If we use too many, we run the
risks of both overfitting and a
very long computation time

• Instead, we may want to assume
that the number of variables in
the regression model is sparse
compared to the number of
observations

The lasso method: feature selection for a
sparse regression
• Lasso (“least absolute shrinkage and

selection operator”) makes there be
fewer regression features by setting
some regression coefficients to zero

• It works by using the L1 norm of the
regression coefficients as a penalty
term added to least squares error

• The geometric interpretations of
these two terms are a constrained
area around the origin with corners on
the axes and an ellipse around the
point that minimizes least squares

• The geometry of the L1 norm means
that the least squares error ellipse is
likely to touch a corner of the L1 area

How to do a lasso

• Lasso minimizes a loss function made up of two parts added together

• The first of these parts is the residuals of a least squares regression

• The second part is some constant λ times the L1 norm of the
regression coefficients (i.e. the sum of their absolute values)

• λ is chosen beforehand (this prevents the λ=0 optimization condition),
and can be tuned to balance sparsity with a good fit

A machine learning-based hypothetical
scenario
• Suppose you have a ML model that

predicts apartment prices

• Suppose it predicts that an 80 m2

apartment that’s 30 minutes from
downtown and in a building that’s
15 years old would cost $1.4M

• You might wonder how much the
80 m2 size, the half-hour commute,
and the 15-year age each
contribute to the predicted price

• However, ML models can be
opaque and difficult to interpret

Shapley values

• These are based on a concept from
game theory designed to distribute
payout to players

• Each player in a game is assigned
some portion of the payout
depending on how much more a
typical team with them earned
than a typical team without them

• They can also be used in ML to
assess how much a given
prediction is due to some feature
value being what it is

How can ML modelling be thought of as a
game?
• Game theory considers games in which players can earn a payout. For instance, in

the game Prisoner’s Dilemma, if Player 1 cooperates and Player 2 defects, P1 gets
a payout S and P2 gets a payout T, where T > S

• Since the original use of Shapley values was to apportion payout amongst a
bunch of players depending on how much they contributed, we can use the same
framework to “apportion” a predicted response variable value amongst features
depending on how much they raised or lowered it

• This works by having features collaborate in “coalitions”, and determining how
much the response variable is predicted to change when a feature plays (is part
of the coalition) vs. doesn’t play (isn’t part of the coalition)

• Here, a game is one specific prediction made by a model (i.e. with specific feature
values), the players are the features, and the payout is the predicted value for the
response variable in this specific case minus its expected value

How Shapley values can be computed (the
simplified version)
• Suppose we predicted a response variable

R to have value R* using a model with n
features total

• For a given feature x, there are 2n-1

possible coalitions without x

• Pick one such coalition, called C, and
predict R using just the features in C

• For each feature in C, use its value from
when you predicted R*

• For each feature not in C (including x), use
its expected value (integrate it out or do
sampling)

• Now, add x to C, and predict R in the
same way using the new coalition. Repeat
for all coalitions

What if you have a recurrent
signal and want to know when it
will show up?
Short-time Fourier transform, wavelets

Background: Fourier series

• They’re a way of decomposing a
function into sines and cosines,
which means you can use them to
extract periodic frequencies

• This is possible because sines and
cosines form a basis for the space
of all functions, so any function is a
linear combination of them

• The Fourier transform thus
converts between the time domain
and the frequency domain

What if you have a wavefunction whose
shape changes over time?
• Fourier transforms present a

static picture of a function, as
integrals used when constructing
each term are over all time

• If you have a periodic signal that
“speeds up” or “slows down”
(i.e. its period changes), using a
standard Fourier transform will
result in missing or inaccurate
information

Short-time Fourier transform

• These pick up signals localized in
time by repeatedly doing Fourier
transforms on pieces of a function

• The discrete version breaks up the
input function into blocks and does
a Fourier transform on each block

• The continuous version does a
Fourier transform on the input
function multiplied by a “window
function” with finite support,
which slides along the axis (this is
similar to convolution)

Window size in STFT

• Using a narrow window function
enables accurate detection of
when frequencies change, since
you’re finding frequencies over
smaller areas of time

• Using a wide window function
provides a good resolution in
frequency, since many waves can
fit within the window even if they
have low frequencies

• However, with STFT, you can
typically only get one or the other

Wavelets: an introduction

• Wavelets are procedurally-
generated functions with finite
support, and are usually oscillatory

• A wavelet transform is similar to
STFT in the sense that it features
convolving an input function with a
series of basis functions (a “family”
of wavelets)

• Because the wavelets in a family
are on different temporal scales
(unlike the window in STFT), we
can get good resolution in both
time and frequency from them

How wavelets can be used: epileptic seizures
and sea surface temperature

Sidenote: how about finding patterns in 2D
data?
• Wavelets have also been used for

image segmentation and denoising;
this often comes up in medical
image processing

• Image segmentation can also be
done using k-means

• Machine learning methods have
recently been developed for this,
such as U-Net (which is also part of
the foundation of Midjourney)

• Building machine learning network
architectures based on wavelets is
an active research area

What if you have some time
series data and want to build a
dynamical system out of it?
Sparse identification of nonlinear dynamics

What does “sparse identification” mean in
the context of dynamical systems?
• Complex systems with many

interacting parts are all over the
place, but deriving mechanistic
models for them can be tough

• There potentially could be lots of
different terms in a dynamical
system model, e.g. x, x2, xy, x/(y+k)

• However, most equations will only
contain a few of these, making the
terms in any given DE sparse in the
overall space of terms

SINDy creates parsimonious dynamical
systems from time series data
• To use SINDy, you need a

multivariate time series and
some terms that you think might
be in the governing DEs for the
time series

• SINDy uses Lasso to select a
parsimonious set of terms to
constitute the DEs, along with
the terms’ coefficients

• There’s an implementation of it
in Python (called PySINDy)

Schematic for how SINDy works

SINDy has been modified for use with rational
functions…

…and functions with
a control input (this
has applications for
problems such as
aircraft control and
optimal drug dosage)

What if you have categories of time
series, and want to know how you
could push a given time series into a
different category?
Time series counterfactuals

Categorizing time series

• This is mathematically similar to
classification of individual points,
but the objects being classified
are (of course) full time series

• Time series classification can be
a very high-dimensional
problem, depending on length
and temporal resolution

• Hence, it is typically done using
machine learning methods

What if things were a little different?

• The principle behind time series
counterfactuals is that if you
change something about a given
time series, it could be put into
another category

• Often, methods for doing this ask
what the smallest change that
could recategorize a time series is

• This is typically done by replacing
part of the time series in question
with a different sequence of points

The UC Riverside time series archive

• This has been around
since 2002 and
contains many time
series commonly used
for testing; you can
download them all

• There is also a
multivariate time
series archive (linked
from the UCR archive)

There are many time series counterfactual
methods, each with their own advantages
• Ates et el. 2021, “Counterfactual Explanations for Multivariate Time

Series”

• Delaney et al. 2021, “Instance-Based Counterfactual Explanations for
Time Series Classification”

• ZD Wang et al. 2024, “Glacier: guided locally constrained
counterfactual explanations for time series classification”

• Bahri et al. 2024, “Discord-based counterfactual explanations for time
series classification”

• Maybe you can come up with something yourself

	Slide 1: Tools and techniques for model building
	Slide 2: Before I begin, a few notes on applied math
	Slide 3: Necessity is the mother of invention
	Slide 4: A quick background on Python, in case you’re not already familiar with it
	Slide 5: What if you have a lot of different objects and want to find out which ones are similar?
	Slide 6: What is cluster analysis?
	Slide 7: FYI: two classic datasets (Fisher Iris and MNIST) that will come up later
	Slide 8: Single-linkage clustering
	Slide 9: Simple SLC algorithm: setup
	Slide 10: Simple SLC algorithm: running the algorithm
	Slide 11: Dendrograms
	Slide 12: k-means clustering
	Slide 13: How k-means works
	Slide 14: Expectation-maximization: a probabilistic clustering algorithm
	Slide 15: How to use EM
	Slide 16: What if you already know which categories your objects fall into, but want to classify new objects?
	Slide 17: The support vector machine
	Slide 18: Separating categories by using dimensionality to our advantage (the “kernel trick”)
	Slide 19: SVMs can be hard or soft
	Slide 20: The hinge loss function for soft SVMs
	Slide 21: Decision trees
	Slide 22: ML can be used to create decision trees
	Slide 23: Having multiple trees can address the risk of overfitting
	Slide 24: How a random forest is constructed
	Slide 25: Boosting: another way to get more accurate predictions from decision trees
	Slide 26: How boosting works in schematic form
	Slide 27: What if you have high-dimensional data and want to better visualize its structure?
	Slide 28: A brief word about scale in datasets
	Slide 29: How can we fix this?
	Slide 30: Principal component analysis
	Slide 31: How many principal components are necessary to describe data?
	Slide 32: PCA can uncover big-picture patterns in data
	Slide 33: t-distributed stochastic neighbour embedding
	Slide 34: Quirks of t-SNE
	Slide 35: What if you want to do further analysis on your data, but it’s split into imbalanced categories?
	Slide 36: Why are imbalanced datasets a problem?
	Slide 37: A solution: Synthetic Minority Oversampling TEchnique (SMOTE)
	Slide 38: That’s all for today
	Slide 39: What if you already have a cluster of points, and want to see which ones are the most prominent?
	Slide 40: Hot spots and cold spots
	Slide 41: The local Getis-Ord statistic: a method for quantifying hot and cold spots
	Slide 42: Hot spots often come up if you’re doing anything with spatial data
	Slide 43: What if you have a few different features and want to see which ones are important?
	Slide 44: Sparse regression
	Slide 45: The lasso method: feature selection for a sparse regression
	Slide 46: How to do a lasso
	Slide 47: A machine learning-based hypothetical scenario
	Slide 48: Shapley values
	Slide 49: How can ML modelling be thought of as a game?
	Slide 50: How Shapley values can be computed (the simplified version)
	Slide 51: What if you have a recurrent signal and want to know when it will show up?
	Slide 52: Background: Fourier series
	Slide 53: What if you have a wavefunction whose shape changes over time?
	Slide 54: Short-time Fourier transform
	Slide 55: Window size in STFT
	Slide 56: Wavelets: an introduction
	Slide 57: How wavelets can be used: epileptic seizures and sea surface temperature
	Slide 58: Sidenote: how about finding patterns in 2D data?
	Slide 59: What if you have some time series data and want to build a dynamical system out of it?
	Slide 60: What does “sparse identification” mean in the context of dynamical systems?
	Slide 61: SINDy creates parsimonious dynamical systems from time series data
	Slide 62: Schematic for how SINDy works
	Slide 63: SINDy has been modified for use with rational functions…
	Slide 64: …and functions with a control input (this has applications for problems such as aircraft control and optimal drug dosage)
	Slide 65: What if you have categories of time series, and want to know how you could push a given time series into a different category?
	Slide 66: Categorizing time series
	Slide 67: What if things were a little different?
	Slide 68: The UC Riverside time series archive
	Slide 69: There are many time series counterfactual methods, each with their own advantages

