
Tools and techniques for 
model building

A presentation by Russell Milne



Before I begin, a few notes on applied math

• By definition, applied math is applied, which means that it is used to 
solve real-world problems

• Because there’s lots of data now, a lot of contemporary mathematical 
applications involve working with data

• If you’re using math in the real world, it helps to have a large toolbox 
and know the right tool for the job

• Sufficiently applied math is often indistinguishable from engineering 
or computer science

• New math is constantly being developed to fit needs. Applied math is 
much quicker in this regard than pure math



Necessity is the mother of invention

• Wavelets: developed during the ‘80s (Morlet, Daubechies, Cazelles, etc.)
• Lasso method: Santosa and Symes 1986, Tibshirani 1996
• Boosting: Kearns and Valiant 1989, Freund and Schapire 1995
• Local Getis-Ord statistic: Getis and Ord 1992, 1995
• Random forest: Heath et al. 1993, Ho 1995
• Synthetic Minority Oversampling TEchnique: Chawla et al. 2002
• t-SNE: 2024 Nobel winner Geoffrey Hinton and collaborators (2002, 2008)
• U-Net: Ronneberger et al. 2015
• SINDy: University of Washington team 2016; refinement ongoing
• Shapley Additive exPlanations: Lundberg and Lee 2017
• Time series counterfactuals: development ongoing (currently active)



A quick background on Python, in case you’re 
not already familiar with it
• Programming language often 

used for ML and data science 
applications

• Created by CS people rather 
than mathematicians; indices 
start with 0

• Free to use; Jupyter Lab is a 
good GUI implementation

• Many, many useful packages 
(e.g. SciPy, Pandas, Matplotlib)



What if you have a lot of different 
objects and want to find out 
which ones are similar?
Single-linkage clustering, k-means, expectation-maximization



What is cluster analysis?

• Essentially a way of grouping 
similar objects together

• Generally works by initializing 
some number of clusters and 
then assigning objects to one (or 
more) of the clusters

• Good if you have a lot of objects 
and manually doing pairwise 
comparisons would be a hassle



FYI: two classic datasets (Fisher Iris and 
MNIST) that will come up later



Single-linkage clustering

• Simple, intuitive clustering 
method based on repeatedly 
joining nearby clusters together

• Hierarchical clustering algorithm, 
meaning that you can use it to 
create dendrograms

• Sometimes called the “friends of 
friends” algorithm, in reference 
to its method of joining clusters



Simple SLC algorithm: setup

• Suppose we have n objects and know the pairwise distances between 
them, using a distance metric d.

• Start with n clusters, i.e. each cluster contains exactly one object. This 
means that at the beginning, the distances between clusters will be 
the same as the distances between objects.

• Store the distances between clusters in a square matrix M, and keep 
track of which cluster each object is in in a vector v. This can be done 
by assigning each initial cluster a number. (A convenient way to do 
this would be to use the clusters’ row and column indices in M.)



Simple SLC algorithm: running the algorithm

• Find the lowest distance between two clusters. These two clusters, which we will 
call a and b, will be merged into one bigger cluster. Make note of the cluster 
numbers associated with a and b; we’ll need these later.

• The merged clusters a and b are now considered to be one cluster. In the row of 
M containing the distances from a to the other clusters, if d(a,x) > d(b,x) for some 
cluster x, then set d(a,x) = d(b,x).

• Do the same thing for the column corresponding to distances from a.

• After all this, set d(b,x) to NaN (or some extremely high number) for all x, to 
reflect the fact that cluster b no longer exists.

• We still need to update the entries in v to reflect that all objects in cluster b are 
now part of cluster a. For all entries in v whose value is the cluster number of b, 
change this to the cluster number of a.

• Repeat these steps until you have your desired number of clusters.



Dendrograms

• Single-linkage clustering can also 
be used to create dendrograms

• Here, each initial object can be 
considered a node of a graph

• In the previous algorithm, when a
and b are merged, the distance 
between a (or b) and the node that 
joins the two is d(a,b)/2

• Continuing the algorithm until only 
one cluster remains, while joining 
nodes at each step, produces the 
dendrogram



k-means clustering

• This is a method that clusters 
vectors by their distance to each 
of k different cluster means (not 
part of the original dataset)

• It works by creating a Voronoi 
diagram out of the vector space

• Hence, k-means splits along 
straight lines and generates 
convex clusters



How k-means works

• Two steps: assignment, update

• To start, initialize k different 
cluster means as seed values   
(k-means++ is good for this)

• 1: Assign all vectors to a cluster 
based on which cluster mean 
they are closest to

• 2: Calculate the mean location of 
all vectors in each cluster; use 
these as the new cluster means. 
Repeat until convergence.



Expectation-maximization: a probabilistic 
clustering algorithm
• EM is a way to find properties of 

a distribution that some data is 
assumed to be drawn from

• This means that it can be used to 
create Gaussian mixture models, 
where each Gaussian can be 
considered as a cluster

• Using it this way makes it a 
version of k-means in which 
vectors are assigned to clusters 
probabilistically



How to use EM

• At the outset, initialize k different 
multivariate Gaussian distributions 
(these are your priors)

• Expectation step: For each vector, 
find the likelihood that that vector 
belongs to each distribution

• Maximization step: Given this 
distribution membership data, 
recalculate the mean and variances 
of each distribution



What if you already know which 
categories your objects fall into, 
but want to classify new objects?
Support vector machine, decision trees



The support vector machine

• Given some data that is classified 
into two categories, a SVM will 
produce an equation separating 
the categories

• Specifically, a SVM creates a 
hyperplane (a higher-dimensional 
analogue of a line or a plane)

• The chosen hyperplane maximizes 
the gap between instances of the 
two categories

• New objects can be classified 
based on which side of the 
hyperplane they fall on



Separating categories by using dimensionality 
to our advantage (the “kernel trick”)
• SVMs can distinguish categories that are linearly separable, since hyperplanes are linear

• However, you can find nonlinear boundaries by implicitly calculating more dimensions

• This is done by defining an inner product on the vectors in your dataset



SVMs can be hard or soft

• Categories that are linearly 
separable (“hard margin”) can 
always be separated by a SVM

• If the categories cannot be 
linearly separated (“soft 
margin”), a loss function is 
required to select a hyperplane

• In such a case, we want a 
hyperplane that does the best 
job at classification rather than a 
perfect job



The hinge loss function for soft SVMs

• Hinge loss, i.e. f(x) = max(0, 1-x) or 
smoothed versions, is commonly 
used to quantify SVM error

• For points on the correct side of 
the hyperplane with enough 
margin, the hinge loss function 
takes the value 0

• For points on the wrong side of the 
hyperplane (i.e. separated from 
their category), the hinge loss 
function scales with distance to the 
hyperplane



Decision trees

• A decision tree is a graph that takes 
an object as input, and has 
branching paths that ask questions 
about the object

• Following a path until the end 
yields a decision about the object

• Decision trees can use classification 
(where objects are assigned to 
discrete categories at the end) or 
regression (which instead have a 
continuous response variable)



ML can be used to create decision trees

• This is done by repeatedly 
partitioning a dataset according to 
rules produced by a ML algorithm

• First the entire dataset is divided 
(thus making the first decision 
branches), then each subset 
created by this decision is itself 
divided, et cetera

• Trees that are too complex may 
induce overfitting; this can be 
addressed using ensemble 
methods like bagging or boosting



Having multiple trees can address the risk of 
overfitting
• Trees can be aggregated in a 

“random forest”, where the mean 
prediction made by all trees in the 
forest is adopted by the model

• The random forest algorithm uses 
bagging (bootstrap aggregation) to 
induce randomness at two 
different stages

• Each tree in the forest is trained on 
a random subset of the data, and 
the features that the tree uses for 
classification are chosen randomly



How a random forest is constructed

• Sample available training 
data with replacement to 
build a dataset for 
creating one tree

• Sample features with 
replacement to choose 
which feature each step 
in the tree will use to 
split the data

• Do this many times to 
produce lots of trees



Boosting: another way to get more accurate 
predictions from decision trees
• Boosting assembles a strong 

classifier from many weak ones in a 
sequential training process

• To use boosting with decision 
trees, we first create a simple tree 
trained on the observations in our 
dataset (often with only one step)

• We then use the residuals or loss 
function gradients of this tree to 
train the next tree, and so on until 
we have enough trees to aggregate

• This process allows us to correct 
mistakes made by previous trees



How boosting works in schematic form



What if you have high-
dimensional data and want to 
better visualize its structure?
Principal component analysis, t-distributed stochastic neighbour embedding



A brief word about scale in datasets

• If you have a lot of different 
features in a dataset, they might be 
on different scales

• Suppose you have two features 
that take values {1,2,3,4,5} and 
{100,200,300,400,500}

• Feature importance algorithms 
might place far more weight on the 
second of those two features, even 
though it has the same relative 
structure as the first



How can we fix this?

• Normalization scales a feature’s 
minimum value to 0 and its 
maximum value to 1

• Another method is converting 
feature values into Z-scores

• The Z-score of a value in a 
distribution is how many 
standard deviations it is away 
from the mean



Principal component analysis

• If you have a really big dataset, 
some of its features might be 
correlated with each other

• PCA works by transforming data 
onto orthogonal axes (“principal 
components”)

• Each principal component is an 
eigenvector of the matrix of 
covariates between features

• Hence, the principal components 
are linear combinations of the 
original features



How many principal components are 
necessary to describe data?
• Usually, the first few principal 

components capture most of the 
variance in the data (so most can 
be dropped)

• One way to tell is by looking at a 
scree plot of explained variance 
and using the “elbow method” 
(finding a place where the scree 
plot bends, or has a sizable gap 
between successive components)

• Draw a line from the first point in 
the scree plot to the last one. The 
point farthest away from this line is 
a good guess



PCA can 
uncover 
big-picture 
patterns in 
data



t-distributed stochastic neighbour embedding

• t-SNE is a method for visualizing 
high-dimensional data (e.g. 
MNIST), and a de facto clustering 
algorithm

• It works by finding the likelihood 
that each object would choose 
each other object as a 
neighbour, based on weighted 
distance functions

• There’s an implementation of it 
in scikit-learn (in Python)



Quirks of t-SNE

• It can form clusters that are 
nonlinearly separated in high-
dimensional space

• Its axes have no meaning, so 
neither do the sizes of the clusters 
or the distances between them

• It’s non-deterministic (different 
runs give different results)

• Hyperparameters: “perplexity” is 
sort of like the desired number of 
neighbours for each point; epsilon 
is t-SNE’s learning rate



What if you want to do further 
analysis on your data, but it’s split 
into imbalanced categories?
SMOTE



Why are imbalanced datasets a problem?

• Sometimes, an event of interest 
occurs very rarely, and training 
data for a model may have very 
few instances of it occurring but 
many of it not occurring

• In such cases, null models (e.g. 
“nobody ever commits credit 
card fraud”, “nobody ever gets 
this rare form of cancer”) may 
have high predictive power 
despite being useless or harmful



A solution: Synthetic Minority Oversampling 
TEchnique (SMOTE)
• SMOTE creates new observations 

by taking linear combinations of 
existing observations in the class 
with fewer members

• This is done to observations that 
are close enough together that the 
linear combinations of them will 
still be in the minority class

• The idea is to make perturbations 
to data points in the minority class, 
so we get new points rather than 
resampling the existing ones



That’s all for today



What if you already have a cluster 
of points, and want to see which 
ones are the most prominent?
Local Getis-Ord statistic



Hot spots and cold spots

• Suppose you have some 
observations that are joined 
together in a network, for 
example an adjacency matrix 
(for spatial data)

• A hot spot is where several 
observations with high values of 
a variable of interest are close 
together in the network; likewise 
for cold spots and low values



The local Getis-Ord statistic: a method for 
quantifying hot and cold spots



Hot spots often come up if you’re doing 
anything with spatial data
• A common application of local 

Getis-Ord is to find out whether a 
variable of interest is abnormally 
high or low across some region

• This makes it very common in 
applications involving satellite 
imagery and/or GIS data

• It can be used on any kind of mesh
connecting local observation 
points, even unusual ones such as a 
lakeshore (i.e. circle-shaped graph)



What if you have a few different 
features and want to see which 
ones are important?
Lasso method, Shapley values



Sparse regression

• Suppose we’re doing a 
regression (linear or otherwise), 
and we have a lot of variables

• If we use too many, we run the 
risks of both overfitting and a 
very long computation time

• Instead, we may want to assume 
that the number of variables in 
the regression model is sparse 
compared to the number of 
observations



The lasso method: feature selection for a 
sparse regression
• Lasso (“least absolute shrinkage and 

selection operator”) makes there be 
fewer regression features by setting 
some regression coefficients to zero

• It works by using the L1 norm of the 
regression coefficients as a penalty 
term added to least squares error

• The geometric interpretations of 
these two terms are a constrained 
area around the origin with corners on 
the axes and an ellipse around the 
point that minimizes least squares

• The geometry of the L1 norm means 
that the least squares error ellipse is 
likely to touch a corner of the L1 area



How to do a lasso

• Lasso minimizes a loss function made up of two parts added together

• The first of these parts is the residuals of a least squares regression

• The second part is some constant λ times the L1 norm of the 
regression coefficients (i.e. the sum of their absolute values)

• λ is chosen beforehand (this prevents the λ=0 optimization condition), 
and can be tuned to balance sparsity with a good fit



A machine learning-based hypothetical 
scenario
• Suppose you have a ML model that 

predicts apartment prices

• Suppose it predicts that an 80 m2

apartment that’s 30 minutes from 
downtown and in a building that’s 
15 years old would cost $1.4M

• You might wonder how much the 
80 m2 size, the half-hour commute, 
and the 15-year age each 
contribute to the predicted price

• However, ML models can be 
opaque and difficult to interpret



Shapley values

• These are based on a concept from 
game theory designed to distribute 
payout to players

• Each player in a game is assigned 
some portion of the payout 
depending on how much more a 
typical team with them earned 
than a typical team without them

• They can also be used in ML to 
assess how much a given 
prediction is due to some feature 
value being what it is



How can ML modelling be thought of as a 
game?
• Game theory considers games in which players can earn a payout. For instance, in 

the game Prisoner’s Dilemma, if Player 1 cooperates and Player 2 defects, P1 gets 
a payout S and P2 gets a payout T, where T > S

• Since the original use of Shapley values was to apportion payout amongst a 
bunch of players depending on how much they contributed, we can use the same 
framework to “apportion” a predicted response variable value amongst features 
depending on how much they raised or lowered it

• This works by having features collaborate in “coalitions”, and determining how 
much the response variable is predicted to change when a feature plays (is part 
of the coalition) vs. doesn’t play (isn’t part of the coalition)

• Here, a game is one specific prediction made by a model (i.e. with specific feature 
values), the players are the features, and the payout is the predicted value for the 
response variable in this specific case minus its expected value



How Shapley values can be computed (the 
simplified version)
• Suppose we predicted a response variable 

R to have value R* using a model with n
features total

• For a given feature x, there are 2n-1

possible coalitions without x

• Pick one such coalition, called C, and 
predict R using just the features in C

• For each feature in C, use its value from 
when you predicted R*

• For each feature not in C (including x), use 
its expected value (integrate it out or do 
sampling)

• Now, add x to C, and predict R in the 
same way using the new coalition. Repeat 
for all coalitions



What if you have a recurrent 
signal and want to know when it 
will show up?
Short-time Fourier transform, wavelets



Background: Fourier series

• They’re a way of decomposing a 
function into sines and cosines, 
which means you can use them to 
extract periodic frequencies

• This is possible because sines and 
cosines form a basis for the space 
of all functions, so any function is a 
linear combination of them

• The Fourier transform thus 
converts between the time domain 
and the frequency domain



What if you have a wavefunction whose 
shape changes over time?
• Fourier transforms present a 

static picture of a function, as 
integrals used when constructing 
each term are over all time

• If you have a periodic signal that 
“speeds up” or “slows down” 
(i.e. its period changes), using a 
standard Fourier transform will 
result in missing or inaccurate 
information



Short-time Fourier transform

• These pick up signals localized in 
time by repeatedly doing Fourier 
transforms on pieces of a function

• The discrete version breaks up the 
input function into blocks and does 
a Fourier transform on each block

• The continuous version does a 
Fourier transform on the input 
function multiplied by a “window 
function” with finite support, 
which slides along the axis (this is 
similar to convolution)



Window size in STFT

• Using a narrow window function 
enables accurate detection of 
when frequencies change, since 
you’re finding frequencies over 
smaller areas of time

• Using a wide window function 
provides a good resolution in 
frequency, since many waves can 
fit within the window even if they 
have low frequencies

• However, with STFT, you can 
typically only get one or the other



Wavelets: an introduction

• Wavelets are procedurally-
generated functions with finite 
support, and are usually oscillatory

• A wavelet transform is similar to 
STFT in the sense that it features 
convolving an input function with a 
series of basis functions (a “family” 
of wavelets)

• Because the wavelets in a family 
are on different temporal scales 
(unlike the window in STFT), we 
can get good resolution in both 
time and frequency from them



How wavelets can be used: epileptic seizures 
and sea surface temperature



Sidenote: how about finding patterns in 2D 
data?
• Wavelets have also been used for 

image segmentation and denoising; 
this often comes up in medical 
image processing

• Image segmentation can also be 
done using k-means

• Machine learning methods have 
recently been developed for this, 
such as U-Net (which is also part of 
the foundation of Midjourney)

• Building machine learning network 
architectures based on wavelets is 
an active research area



What if you have some time 
series data and want to build a 
dynamical system out of it?
Sparse identification of nonlinear dynamics



What does “sparse identification” mean in 
the context of dynamical systems?
• Complex systems with many 

interacting parts are all over the 
place, but deriving mechanistic 
models for them can be tough

• There potentially could be lots of 
different terms in a dynamical 
system model, e.g. x, x2, xy, x/(y+k)

• However, most equations will only 
contain a few of these, making the 
terms in any given DE sparse in the 
overall space of terms



SINDy creates parsimonious dynamical 
systems from time series data
• To use SINDy, you need a 

multivariate time series and 
some terms that you think might 
be in the governing DEs for the 
time series

• SINDy uses Lasso to select a 
parsimonious set of terms to 
constitute the DEs, along with 
the terms’ coefficients

• There’s an implementation of it 
in Python (called PySINDy)



Schematic for how SINDy works



SINDy has been modified for use with rational 
functions…



…and functions with 
a control input (this 
has applications for 
problems such as 
aircraft control and 
optimal drug dosage)



What if you have categories of time 
series, and want to know how you 
could push a given time series into a 
different category?
Time series counterfactuals



Categorizing time series

• This is mathematically similar to
classification of individual points, 
but the objects being classified 
are (of course) full time series

• Time series classification can be 
a very high-dimensional 
problem, depending on length 
and temporal resolution

• Hence, it is typically done using
machine learning methods



What if things were a little different?

• The principle behind time series 
counterfactuals is that if you 
change something about a given 
time series, it could be put into 
another category

• Often, methods for doing this ask 
what the smallest change that 
could recategorize a time series is

• This is typically done by replacing 
part of the time series in question 
with a different sequence of points



The UC Riverside time series archive

• This has been around 
since 2002 and 
contains many time 
series commonly used 
for testing; you can 
download them all

• There is also a 
multivariate time 
series archive (linked 
from the UCR archive)



There are many time series counterfactual 
methods, each with their own advantages
• Ates et el. 2021, “Counterfactual Explanations for Multivariate Time 

Series”

• Delaney et al. 2021, “Instance-Based Counterfactual Explanations for 
Time Series Classification”

• ZD Wang et al. 2024, “Glacier: guided locally constrained 
counterfactual explanations for time series classification”

• Bahri et al. 2024, “Discord-based counterfactual explanations for time 
series classification”

• Maybe you can come up with something yourself


	Slide 1: Tools and techniques for model building
	Slide 2: Before I begin, a few notes on applied math
	Slide 3: Necessity is the mother of invention
	Slide 4: A quick background on Python, in case you’re not already familiar with it
	Slide 5: What if you have a lot of different objects and want to find out which ones are similar?
	Slide 6: What is cluster analysis?
	Slide 7: FYI: two classic datasets (Fisher Iris and MNIST) that will come up later
	Slide 8: Single-linkage clustering
	Slide 9: Simple SLC algorithm: setup
	Slide 10: Simple SLC algorithm: running the algorithm
	Slide 11: Dendrograms
	Slide 12: k-means clustering
	Slide 13: How k-means works
	Slide 14: Expectation-maximization: a probabilistic clustering algorithm
	Slide 15: How to use EM
	Slide 16: What if you already know which categories your objects fall into, but want to classify new objects?
	Slide 17: The support vector machine
	Slide 18: Separating categories by using dimensionality to our advantage (the “kernel trick”)
	Slide 19: SVMs can be hard or soft
	Slide 20: The hinge loss function for soft SVMs
	Slide 21: Decision trees
	Slide 22: ML can be used to create decision trees
	Slide 23: Having multiple trees can address the risk of overfitting
	Slide 24: How a random forest is constructed
	Slide 25: Boosting: another way to get more accurate predictions from decision trees
	Slide 26: How boosting works in schematic form
	Slide 27: What if you have high-dimensional data and want to better visualize its structure?
	Slide 28: A brief word about scale in datasets
	Slide 29: How can we fix this?
	Slide 30: Principal component analysis
	Slide 31: How many principal components are necessary to describe data?
	Slide 32: PCA can uncover big-picture patterns in data
	Slide 33: t-distributed stochastic neighbour embedding
	Slide 34: Quirks of t-SNE
	Slide 35: What if you want to do further analysis on your data, but it’s split into imbalanced categories?
	Slide 36: Why are imbalanced datasets a problem?
	Slide 37: A solution: Synthetic Minority Oversampling TEchnique (SMOTE)
	Slide 38: That’s all for today
	Slide 39: What if you already have a cluster of points, and want to see which ones are the most prominent?
	Slide 40: Hot spots and cold spots
	Slide 41: The local Getis-Ord statistic: a method for quantifying hot and cold spots
	Slide 42: Hot spots often come up if you’re doing anything with spatial data
	Slide 43: What if you have a few different features and want to see which ones are important?
	Slide 44: Sparse regression
	Slide 45: The lasso method: feature selection for a sparse regression
	Slide 46: How to do a lasso
	Slide 47: A machine learning-based hypothetical scenario
	Slide 48: Shapley values
	Slide 49: How can ML modelling be thought of as a game?
	Slide 50: How Shapley values can be computed (the simplified version)
	Slide 51: What if you have a recurrent signal and want to know when it will show up?
	Slide 52: Background: Fourier series
	Slide 53: What if you have a wavefunction whose shape changes over time?
	Slide 54: Short-time Fourier transform
	Slide 55: Window size in STFT
	Slide 56: Wavelets: an introduction
	Slide 57: How wavelets can be used: epileptic seizures and sea surface temperature
	Slide 58: Sidenote: how about finding patterns in 2D data?
	Slide 59: What if you have some time series data and want to build a dynamical system out of it?
	Slide 60: What does “sparse identification” mean in the context of dynamical systems?
	Slide 61: SINDy creates parsimonious dynamical systems from time series data
	Slide 62: Schematic for how SINDy works
	Slide 63: SINDy has been modified for use with rational functions…
	Slide 64: …and functions with a control input (this has applications for problems such as aircraft control and optimal drug dosage)
	Slide 65: What if you have categories of time series, and want to know how you could push a given time series into a different category?
	Slide 66: Categorizing time series
	Slide 67: What if things were a little different?
	Slide 68: The UC Riverside time series archive
	Slide 69: There are many time series counterfactual methods, each with their own advantages

