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1 November 15: Steady states and phase por-
traits

Previously, I introduced the concept of nonlinear dynamical systems, which will
generally be very hard or (usually) impossible to solve by hand. That means
that we need to gain information about the state variables in such a system
using other means. This week, I’ll talk to you about many of the things that
you can do with nonlinear dynamical systems without even having to integrate
them at all.

One of the most important features of a dynamical system is its steady
states. These are points in the system for which all rates of change are zero. If
a dynamical system is at a steady state, then it will stay there. (An exception to
this is if we are dealing with stochastic differential equations, and some random
perturbation knocks the system off of the steady state, but that is beyond the
scope of this course.) Other words for a steady state that you may encounter
include “fixed point” and “equilibrium point”. Mathematically, a steady state
of a dynamical system is defined as anywhere at which the derivatives that make
up the system are all zero, as at such a point none of the system’s state variables
can change. In other words, suppose we have the following system:

dx1

dt = f1(t, x1, x2, . . . , xn)
dx2

dt = f2(t, x1, x2, . . . , xn)

· · ·
dxn

dt = fn(t, x1, x2, . . . , xn)

(1)

A fixed point x∗ = [x∗
1 x∗

2 . . . x∗
n]

T
is any point in which fi = 0 ∀i. This

means that no change to any of the state variables x1, x2, . . . , xn will occur. In
practice, this is easiest to get when none of the functions fi have any dependence
on t, i.e. all differential equations in the system are autonomous.

To find where one of the state variables in the system (say x1) has a rate of
change of zero, we just need to set f1 to zero and solve for values of x1, x2, . . . , xn

that will make this so. If these values also make the rates of change of all of the
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other state variables zero, then they form a fixed point of the dynamical system
(as defined above). Here’s an example of this in action. Suppose that we have
the following dynamical system:{

dx
dt = x2 − 2y
dy
dt = 3x− xy

(2)

Let’s start by setting dy
dt = 0. This occurs when either x = 0 or y = 3,

since we get the relation 3x = xy. Note that these are both lines in the (x, y)-
plane rather than individual points. This will typically be the case when finding
fixed points, since setting ODEs to zero will result in a relation between several
variables (in the two-dimensional case, often a function of one variable with
respect to the other). Any line in a 2× 2 system on which one of the variables
has a rate of change of zero is called a “nullcline”; the term “isocline” is also
used, although this more properly refers to any line on which the slope of an
ODE takes a specified constant value (not necessarily zero).

Next, we will take dx
dt = 0 to get the other condition for a fixed point. This

results in the quadratic equation y = 1
2x

2, which is the nullcline for x. Any
point that is on the nullclines of both x and y will be a fixed point of the
dynamical system. If you’re finding fixed points in a 2 × 2 system, then you
can plot the nullclines on a graph of y versus x to help visualize them and
where they intersect. Any such plot where we graph two variables against each
other rather than one of them against time is called the “phase plane”, and
an analogue in higher dimensions is “phase space”. Once we have drawn the
nullclines, we can also indicate regions of (x, y)-space where x is increasing or
decreasing, depending on which side of the x-nullcline it is on, and likewise for y.
This will allow us to get a rough approximation of our solutions without doing
any integration at all. We’ll see more things we can do with a phase plane later
on.

In the case that we are working with, there will be three fixed points. This
is because y = 1

2x
2 is a parabola that opens upward, so it will intersect with the

line y = 3 in two places, and it will intersect x = 0 at the point (x∗, y∗) = (0, 0).
To find the other two, we just need to find any x such that 1

2x
2 = 3, which is

true when x = ±
√
6. Therefore, our other two fixed points are (x∗, y∗) = (

√
6, 3)

and (x∗, y∗) = (−
√
6, 3).

It’s possible for a system to have arbitrarily many fixed points. Take, for
example, this relatively simple system:{

dx
dt = x
dy
dt = −2x

(3)

Here, the nullclines for x and y are the same, specifically x = 0, so the
point (x∗, y∗) = (0, y) for any real y will be a fixed point. This can be seen by
integrating dx

dt by hand. We get x(t) = Cet, but if we assume that x starts at 0
(for an initial condition), we get C = 0 and hence x = 0 because et cannot be
0 for finite t. Therefore, x is unchanging if it starts at 0, and since dy

dt depends
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only on x, y will also never change no matter what initial condition is picked
for it.

It’s also possible for a system to have no fixed points. Consider this 3 × 3
system: 

dx
dt = x− z
dy
dt = y − x
dz
dt = z − x− 2

(4)

If we take dx
dt = 0 and dz

dt = 0, we get two parallel planes in (x, y, z)-space.
These can never intersect, so we can never get all three rates of change to be
zero. There are places where two of the three state variables will be fixed, since
the plane y = x that we find by setting dy

dt = 0 intersects both of the other
planes; the line x = y = z is one of these.

What if our dynamical system is large and highly nonlinear, and the equa-
tions that we get when setting each rate of change equal to zero are hard to
solve? In that case, we can use root-finding methods to obtain accurate ap-
proximations. You may have seen Newton’s method in the past, most likely
as a way to find roots of functions of a single variable. If you haven’t, then it
is defined as follows. Suppose that we want to find a root of a function f(t)
whose derivative exists. Then, starting at some initial guess t0, we can apply
the following formula to get a (usually) better guess t1:

t1 = t0 −
f(t0)

f ′(t0)
(5)

This is a recurrence relation, so can be repeated additional times to come
closer to the root and eventually get a very good approximation of it. We would
like to have a way to generalize this to functions of multiple variables, as if
we have this, we can find the roots of the functions dx1

dt = f1(t, x1, x2, . . . , xn),
dx2

dt = f2(t, x1, x2, . . . , xn), and so forth. Luckily, such a way exists. The multi-
dimensional analogue of the derivative is the Jacobian. Suppose that we have
an autonomous dynamical system of the following form:

dx1

dt = f1(x1, x2, . . . , xn)
dx2

dt = f2(x1, x2, . . . , xn)

· · ·
dxn

dt = fn(x1, x2, . . . , xn)

(6)

We can treat f1, f2, . . . , fn as the entries of a vector-valued function, which
we will call F. The Jacobian of this function looks like this:

JF(x1, x2, . . . , xn) =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

 (7)
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If this is evaluated at a single point in (x1, . . . , xn)-space, then it becomes a
matrix full of constants. If this matrix is invertible, then we can use Newton’s
method, albeit a modified version in which we left-multiply F by the inverse of
the Jacobian, J−1

F , instead of multiplying a univariate function f by 1
f ′ . Thus,

if x represents our vector of guesses for the fixed point of the system and x0 our
initial guess, we can use the following formula to iterate towards a fixed point:

x1 = x0 − J−1
F (x0)F(x0) (8)

Note that taking the inverse of a matrix is unbelievably computationally
expensive, i.e. it takes an extremely long time for a computer to do it (especially
for big matrices). Therefore, faster methods have been developed to solve linear
equations such as the one above. However, that is a topic for a different day.

Now that we know our fixed points, what can we say about them? Since
fixed points represent the zeros of the vector-valued function with entries being
the rates of change of our state variables, it would make sense that the rates
of change of the state variables in the area around a fixed point would be very
small. This is correct, but more important is which direction those small rates
of change are in, particularly if they point towards or away from the fixed point.
In the former case, any solution that starts sufficiently close to the fixed point
will be drawn in towards it as time increases. In the latter case, solutions will be
pushed away from it as time increases, although they would be drawn towards
it if time is run backwards to −∞. One example of this is the two differential
equations dx

dt = x and dx
dt = −x. Both of these have a single fixed point, namely

x = 0. For dx
dt = −x, this is an “attractive” fixed point, which can be seen as

the analytical solution to that ODE (x(t) = e−t) tends towards the fixed point
x∗ = 0 as t increases. However, for dx

dt = x, x∗ = 0 is instead a “repelling”
fixed point as its solution (x(t) = et) moves away from the fixed point as time
increases.

How do we tell whether a fixed point is attractive or repelling? It depends on
the slopes of the functions f1, f2, and so on, specifically their slopes evaluated at
the fixed point. This is because a fixed point x∗ of the system is a place where
the vector-valued function F (using the notation that we introduced above) is
zero for all entries in the vector. Suppose we go a slight distance away from the
fixed point, say to some point x∗ + h for some vector h whose entries are very
small. The value of F is just the rates of change of all of our state variables.
Therefore, if x∗ is an attractive fixed point, then we want the slope of F to
be in the opposite direction as our perturbation h, so the action of F pushes
us back into the fixed point. Similarly, for a repelling fixed point, we want F
to act in the the same direction as the perturbation, so perturbing a solution
away from the fixed point causes it to move even further away. I’ll illustrate
this with a one-dimensional example, for simplicity. Suppose we have this very
straightforward ODE:

dx

dt
= f(x) = x (9)
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Here, the only fixed point is x∗ = 0. Therefore, we will be interested in
the behaviour of f(x) at some point x = 0 + h = h. If we take h to be
positive, then f(h) will also be positive, since it will just be h. Likewise, if we
take h to be negative, then f(h) will also be negative. In this way, perturbing
some hypothetical solution x(t) a small distance away from the equilibrium at
0 causes dx

dt = f(x) to push it further away from the equilibrium, so x∗ = 0 is a
repelling fixed point. This can be confirmed by integrating this DE by hand and
noticing that solutions tend to move away from 0 as time increases. Similarly,
if we took dx

dt = −x, we would get exactly the opposite result. There, 0 is an
attractive fixed point, consistent with the observed behaviour of exponential
decay. For a general one-dimensional ODE dx

dt = f(x), the sign of the derivative
f ′(x) evaluated at the fixed point x = x∗ determines whether the fixed point
is attractive or repelling. If f ′(x∗) is negative, the fixed point is attractive. If
it’s positive, then the fixed point is repelling. This can be verified for the cases
mentioned above, as d

dx (x) = 1 > 0 and d
dx (−x) = −1 < 0 regardless of which

point they are evaluated at.

2 November 17: Stability of fixed points in higher
dimensions, including a modelling example

Previously, we looked at how to determine if a fixed point for a one-dimensional
system (i.e. a single differential equation) was attractive or repelling. Today,
we’ll do the same for larger systems. Before we do, I have a final note on the
one-dimensional case. We showed that for a system x′ = f(x) and a fixed point
x∗, x∗ is attractive, or “stable”, if f ′(x∗) < 0, and it is repelling, or “unstable”, if
f ′(x∗) > 0. What if f ′(x∗) = 0? In that case, we don’t have enough information
to tell whether or not the fixed point is stable or unstable, and we will need to
look at the slope of f around the fixed point rather than just at it. It could
even be “semi-stable”, in which solution trajectories that start on one side of
the fixed point flow towards it and those that start on the other side flow away
from it. To visualize this, consider the following ODE:

dx

dt
= x2 (10)

This has a fixed point at x∗ = 0, but we can see that f ′(x) = x, which also
takes the value of 0 at x = x∗. However, f ′(x) takes negative values for negative
values of x, and positive values for positive values of x. Based on what we said
about the sign of f ′, we would thus expect a solution x(t) that started with
a negative value of x to flow towards the fixed point, and a solution x(t) that
started with a positive value of x to flow away from the fixed point. This is, in
fact, true. If you integrate the above ODE by hand, you will get the solution
x(t) = 1

C−t for C a constant of integration. This solution is a hyperbola with
its singularity at t = C and the horizontal axis as an asymptote; it increases
towards ∞ when it is positive and decreases towards −∞ when it is negative.
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As a sidenote, the process of evaluating the stability of a fixed point of a
nonlinear dynamical system by evaluating the slopes of the functions making
up the system is called “linearization”. The reason for the name is linked to
the reason why it works. Suppose we have a one-dimensional ODE, x′ = f(x),
which has a fixed point x∗. Without loss of generality, we can assume that
this fixed point is x∗ = 0, since if it is some other value of x we can just do a
coordinate transform to make it 0 (e.g. u = x − 3 for a fixed point x∗ = 3). If
this is a linear ODE, i.e. f(x) = kx for some k, then determining the stability
is easy, because we can integrate by hand and get either exponential growth or
exponential decay. (In this case, the derivative f ′ is also just a constant, making
it easy by this method as well.) However, for nonlinear f , integration by hand
might be difficult. On the other hand, all we want to know is the behaviour of
a solution in some neighbourhood of the fixed point, not over all possible values
of t. Therefore, we can make a linear approximation to the function by using
the Taylor series:

f(x) = x∗ + f ′(x∗)(x− x∗) +O(x2) (11)

Note that if x∗ = 0, we get a linear function in x with only one term, which
can easily be integrated by hand. In general, this will be a pretty good approx-
imation close to the fixed point, since the linear term of the Taylor expansion
will dominate all of the others close to 0. However, the more nonlinear our
function is, the more error will accumulate as we move away from the fixed
point. If we are far away from the fixed point under consideration, the solution
might do something that its linear approximation wouldn’t, such as converge to
a different fixed point.

So, let’s dive in to higher-dimensional systems. Using the notation that we
introduced on Monday, suppose that we have the following dynamical system:

dx

dt
= F(x) (12)

As with the one-dimensional case, we want to find out what the slope of F
is at values very close to the fixed point, or in other words F(x∗ + h) for small
h. We will still do this by linearization, but in multiple dimensions, this is more
complicated than just looking at the sign of the derivative of f , like we did
in the one-dimensional case. Instead, we’ll look at the Jacobian of our system
(which we talked about earlier), since the linear term in the Taylor expansion
for a vector-valued function involves the Jacobian:

F(x) ≈ F(x∗) + JF(x
∗) · (x− x∗) (13)

Another way to look at this is that the Jacobian encompasses all of the
partial derivatives of the functions in F, and therefore the slopes of all of the
functions in F with respect to all of the variables in the system. Note also that
if our system isn’t autonomous, then we might have some terms in the Jacobian
with t, based on how the partial derivatives turn out. In that case, linearization
requires some extra justifications, which I won’t go into here.
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So, we have that the linearization of our function F involves taking the
Jacobian of F at the fixed point x∗. How do we use this to evaluate the stability
of x∗? Well, instead of just taking the sign of f ′ in the one-dimensional case,
we will take the signs of all of the eigenvalues of JF. More specifically, we will
take the signs of all of the real parts of the eigenvalues of JF, This is because
real-valued matrices can have complex eigenvalues (as we have seen), but the
complex parts of these don’t affect convergence to the fixed point x∗, because we
have been operating under the assumption that x∗ is real and F is real-valued.

If all of the eigenvalues have negative real parts, then perturbing our solution
by some slight amount in any direction in phase space away from the fixed
point will cause the trajectory of the solution to fall back into the fixed point.
This means that the fixed point will be stable, or a “sink”. If at least one
eigenvalue has a positive real part, then solutions will eventually escape along
the eigendirection in phase space associated with that eigenvalue, making it
unstable. However, there are two different ways that this can happen. If every
eigenvalue has a positive real part, then solution trajectories will escape from
the fixed point in any direction in phase space. Such a fixed point is called
a “source”; note that if time is run backwards, sources become sinks and vice
versa. If some eigenvalues have positive real parts and some have negative
real parts, then solution trajectories may approach the fixed point along an
eigendirection associated with a negative eigenvalue, but then move away from
it along an eigendirection associated with a positive eigenvalue. These kinds of
fixed points are called “saddle points”. To see why, picture some small object
sitting in the middle of a saddle, perfectly balanced. If you perturb it forward
or backward with no lateral motion, then it would theoretically roll back into
the fixed point in the middle. However, if you perturbed it to the left or right, it
would roll off. If instead the small object started out somewhere other than the
very middle of the saddle, it would initially roll towards the fixed point at the
middle, but its ultimate fate would be to fall off. Plotting a solution trajectory
in phase space would reveal a similar pattern, with “forward or backward”
corresponding to a stable eigendirection and “left or right” corresponding to an
unstable one.

I will illustrate this with a few simple examples. Suppose we have the fol-
lowing system, of which the solution should be obvious:{

dx
dt = x
dy
dt = 2y

(14)

Here, we have one fixed point, which is the origin. This system is already
linear, so finding the Jacobian of it is trivial. We get the following:

JF =

[
1 0
0 2

]
(15)

This is a diagonal matrix, so its eigenvalues are just the diagonal entries,
namely r = 1 and r = 2. (If you really want to calculate the characteristic
polynomial, it’s r2−3r+2.) Both of these are positive, so we get that the origin
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is a source, which lines up with what we know about exponential functions. If,
instead, we had the following dynamical system:{

dx
dt = −x
dy
dt = −2y

(16)

then we would get the origin to be a sink, which once again confirms what
we can find analytically. What about a saddle point? Well, suppose we have
the following dynamical system:{

dx
dt = x+ y
dy
dt = x− y

(17)

This is a coupled linear system, and we can solve it analytically using the
methods that we have already learned. It has the origin as its only fixed point,
as that is the only place where the lines x+ y = 0 and x− y = 0 cross. Taking
the Jacobian of this system (which is the same as the coefficient matrix, as the
system is linear), we get the following:

JF =

[
1 1
1 −1

]
(18)

The characteristic polynomial of this matrix is r2− 2 = 0, meaning that our
eigenvalues will be r = ±

√
2. From what we know about the theory behind

linear systems, we can say that our general solution will include a term with

e
√
2t and a term with e−

√
2t. As t increases, depending on the coefficients on

the terms (which we can determine using the initial conditions), we could see
trajectories in phase space (i.e. the (x, y)-plane) in which the solution (x, y) first
appears to approach the origin, but then moves away from it. (A time series
of y(t) would show something similar.) This can be seen, of course, by the fact
that one of the eigenvalues of the Jacobian is positive and the other is negative.

What if the eigenvalues are complex? If that is the case, then the behaviour
of our solutions in phase space will involve rotation. (This is intuitive to see.
Think of the behaviour of ekt when k is real versus when k is complex or purely
imaginary, and the fact that the sine and cosine functions in (x, y)-space are
linked to rotation around a unit circle.) In this case, if the fixed point that we
are evaluating the Jacobian at is a sink or a source, then solutions will travel
towards or away from the fixed point (respectively) in a spiral manner in phase
space. (Saddle points won’t see much change in practice.) If the eigenvalues
are purely imaginary, then solutions will neither converge to nor escape from
the fixed point, instead rotating around it in a circle, at least theoretically. In
practice, this is more accurate for linear systems, since for these the Jacobian is
the same as the coordinate matrix that is used when solving by hand, as seen
above. For nonlinear systems, the extra terms present in the Taylor expansion
that get ignored during linearization may cause the eigenvalues to have nonzero
real parts. We might still get cyclic patterns, but if we do, it’s highly unlikely
that they’ll be circular.
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Since we have just looked at linear systems so far, let’s see an example of the
linearization process for evaluating the stability of a fixed point of a nonlinear
system. Suppose we have the following system, which we used last week as a
predator-prey model: {

dN
dt = rN − αNP
dP
dt = βNP −mP

(19)

We will assume that all constants in the model are non-negative, since the
system becomes non-biological otherwise (e.g. “I eat you and then there’s more
of you”). The first step here is to find the fixed points. dN

dt = 0 when either

N = 0 or P = r
α , and dP

dt = 0 when either P = 0 or N = m
β . Therefore,

there are two locations in phase space where an N -nullcline intersects with a P -
nullcline, which are (N∗, P ∗) = (0, 0) and (N∗, P ∗) = (mβ , r

α ). The first of these
represents extinction of both species, and the second represents coexistence.

Now, let’s evaluate the Jacobian at these points. If we take the partial
derivatives of both of the functions making up the dynamical system, we get
the following:

JF =

[
r − αP −αN
βP βN −m

]
(20)

At (0, 0), most of the terms in the Jacobian reduce to zero, and we are left
with the following:

JF =

[
r 0
0 −m

]
(21)

If we assume that both r and m are positive, then the origin is therefore a
saddle point and hence unstable. In particular, the positive eigenvalue will be r;
you can calculate the corresponding eigenvector (and hence the eigendirection
that solutions will escape from (0, 0) on) yourself. A biological interpretation of
this is that so long as the two species aren’t both completely extinct, they will
continue to survive in the long term. What about the other fixed point, (mβ , r

α )?
In this case, we get the following for our Jacobian:

JF =

[
0 −αm

β
rβ
α 0

]
(22)

Note that we have zeros on the diagonal, and that the other two terms have
opposite signs. That’s a clue that we’ll have purely imaginary eigenvalues, and
indeed our characteristic polynomial is r2+ rm, which has the roots r = i

√
rm.

We had previously said that this might indicate periodic orbits of the fixed point,
although as the system is nonlinear, more analysis is needed. In order to see
whether or not these periodic solutions exist, since we can’t readily integrate the
functions in this system with respect to t, we will instead look at the movement
of solutions within the phase plane, i.e. in (N,P )-space. Consider the following
differential equation:
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dP

dN
=

dP

dt

(
dN

dt

)−1

=
βNP −mP

rN − αNP
=

P (βN −m)

N(r − αP )
(23)

This describes the movement of P relative to N , and luckily for us it is
separable. Separating and integrating yields the following:∫

r − αP

P
dP =

∫
βN −m

N
dN (24)

This evaluates to the following expression, after moving around some sym-
bols and combining constants of integration:

r lnP − αP − βN +m lnN = C (25)

We have from before that N = 0 is an N -isocline and that P = 0 is a P -
isocline. From this, we can conclude that if N starts off positive, then it can’t
become negative, and likewise for P . In other words, any solution that starts in
the first quadrant of the (N,P )-plane will stay there. This is reassuring, since if
it weren’t true then this model wouldn’t be very realistic. Additionally, we just
derived that the expression r lnP −αP −βN +m lnN must always be equal to
a constant, which is finite. This prevents N or P from blowing up to infinity,
so long as both species exist. (Since lnN and lnP could be −∞ if N or P is
zero, we could get the prey going to ∞ if there are no predators present. If
there is no prey, dP

dt will be strictly negative for initial conditions in the first
quadrant, so the predators cannot escape to ∞.) Based on these conclusions,
we can confidently say that both the predator and prey populations will follow
bounded, periodic solutions.

3 November 19: Introduction to bifurcations

Previously, we worked through finding the fixed points of Lotka-Volterra predator-
prey model and their stability. This model was a bit different from the other
dynamical systems that you may have seen before, since it included some param-
eters. These are any constant in the model that is left unspecified (but is not a
state variable or t). In the Lotka-Volterra model, these were r, α, β, and m. We
made the assumption that all of these were positive, which caused us to make
some conclusions about our fixed points, namely that (N∗, P ∗) = (0, 0) is a sad-
dle point and that (N∗, P ∗) = (mβ , r

α ) admits periodic orbits. However, in other
dynamical systems, the parameters might not be defined so strictly. Another
way of saying this is that there might be a fixed point for which the stability
changes depending on the values of certain parameters in the system (even if
we make an assumption that all parameters are positive or something similar).
It’s also possible for a dynamical system to have fixed points that only exist for
certain ranges of a given parameter; if the parameter is outside these ranges,
then F(x) evaluated at that “fixed” point might be nonzero. These occurrences,
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as well as other significant qualitative changes in the behaviour of a dynamical
system when one of its parameters is changed, are called “bifurcations”.

I will demonstrate with a simple example. Suppose we have the following
one-dimensional ODE, for k a constant:

dx

dt
= f(x) = k − x2 (26)

Let’s try finding the fixed points of this DE. They occur when x2 = k, which
means that we will see different behaviour when k > 0, k = 0 and k < 0. For
k > 0, the equation x2 = k has two real solutions, which means that there will
be two fixed points, x∗ =

√
k and x∗ = −

√
k. In order to evaluate the stability

of these, we will take the derivative of f(x), which is f ′(x) = −2x. Evaluated
at

√
k, this is a negative number (since

√
k is positive), which means that the

fixed point x∗ =
√
k is stable. Likewise, we get that the fixed point x∗ = −

√
k

is unstable by using the same method.
On the other hand, if we let k < 0, then there are no fixed points in this

system, because the values of x that make dx
dt = 0 will be purely imaginary.

Taking k = 0 makes the system reduce to dx
dt = −x2, which has just one fixed

point at x∗ = 0 rather than the two that appear when k > 0. In this case, f ′(x)
evaluated at the single fixed point x∗ = 0 is also zero, which means that we
can’t draw any conclusions about its stability from evaluating f ′(x). (We saw
previously that dx

dt = x2 has a semi-stable fixed point at x∗ = 0, and dx
dt = −x2

is the same, albeit with the areas in which the fixed point attracts or repels
solutions being swapped.) Because our ODE dx

dt = k−x2 has a major change to
its fixed points at the parameter value k = 0, we say that a bifurcation happens
at k = 0.

A good way to visualize the fixed points of a system and how they can
change with different values of a certain parameter is by drawing a bifurcation
plot. This is a graph with a parameter on the horizontal axis and the fixed point
of some state variable on the vertical axis. In other words, given a dynamical
system, we are plotting the value taken by one of the variables in the system at
one of the system’s fixed points as a function of a parameter. For the system
we saw previously, we can plot x∗ as a function of k. On the right-hand side of
this bifurcation plot, where k > 0, we will get two lines showing the locations of
our two fixed points. (By convention, on a bifurcation plot, stable fixed points
are shown as solid lines, while unstable ones are shown as dashed lines.) Since
the locations of these two fixed points are x∗ = ±

√
k, the graph looks like what

we would get if we plotted the two equations y(t) =
√
t and y(t) = −

√
t as

part of a standard time series. These two lines representing the fixed points
will collide with each other at k = 0, and on the left-hand side of the graph
no lines representing fixed points will exist. This kind of bifurcation, in which
a stable fixed point and an unstable fixed point come together and annihilate
one another, is called a “fold bifurcation”, as on a bifurcation plot it looks like
the line representing the fixed point is being folded over. Fold bifurcations are
something to watch out for in mathematical models, as they can indicate the
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possibility of drastic changes in the trajectory of a solution if the underlying
parameter is altered in some way.

What are some other kinds of bifurcations? Let’s look at another one-
dimensional ODE, once again for k a constant:

dx

dt
= f(x) = kx− x2 (27)

This one has fixed points when kx = x2, or in other words when x = k and
x = 0. Taking the derivative of f results in f ′(x) = k − 2x. When we evaluate
the stability of x∗ = k, we can notice that f ′ reduces to −k. This means that
if k > 0, x∗ = k is stable, and if k < 0 it is unstable. Meanwhile, if we evaluate
the stability of x∗ = 0, we arrive at the opposite conclusion, because there f ′

reduces instead to k. Therefore, at k = 0, the stability of both of the fixed
points changes, with x∗ = k going from unstable to stable and x∗ = 0 going
from stable to unstable. This also corresponds to the intersection of x∗ = 0
and x∗ = k on a bifurcation plot. (Hence, at k = 0 only one fixed point will
exist, and we won’t be able to ascertain its stability by taking f ′ because f ′

will be zero.) However, unlike in the example we saw previously, the two lines
on the bifurcation plot cross at an angle rather than colliding head-on, so we
get a change in stability rather than them obliterating each other. This kind of
bifurcation, in which two fixed points cross each other and change each other’s
stability, is called a “transcritical bifurcation”.

Are there more kinds of bifurcations? Of course there are. Consider the
following system, for k a constant:

dx

dt
= kx− x3 (28)

This has fixed points whenever x3 = kx, which happens when x = 0 and
when x = ±

√
k. Therefore, there can be a maximum of three fixed points for

this dynamical system, but this only occurs when k > 0. For k < 0, ±
√
k will

both be imaginary, so x∗ = 0 will be the only fixed point. So far, we already
know that something interesting happens at k = 0, namely the creation of two
additional fixed points. What happens when we evaluate their stability? Well,
f ′(x) = k − 3x2. When we test x∗ = 0, this reduces to just k, so x∗ = 0 is
stable if k < 0 and unstable if k > 0. For x∗ = ±

√
k, f ′ evaluates to k − 3k,

which is negative for the only values of k for which those two fixed points exist
(i.e. k > 0). Therefore, at k = 0, a lot of different things happen. The existing
fixed point in the system switches from being stable to unstable, but two new
stable fixed points are created on either side of it. If you plot all of the fixed
points on a bifurcation plot, the shape of all of the lines resembles a pitchfork,
and hence this kind of bifurcation is called a “pitchfork bifurcation”. Note that
you can also get pitchfork bifurcations where a fixed point goes from unstable
to stable and two new unstable fixed points are created on either side of it. For
an example of this, look at dx

dt = kx + x3. A pitchfork bifurcation which has
one stable fixed point that branches into two stable and one unstable ones is
called “supercritical”, whereas a pitchfork bifurcation which has one unstable
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fixed point that branches into two unstable and one stable fixed points is called
“subcritical”.

There’s another kind of bifurcation that only occurs in systems of two di-
mensions or higher. This is called the Hopf bifurcation, and it is related to
a dynamical system having periodic solutions. Before I begin explaining it, I
would first like to point out that having a dynamical system with at least two
state variables is a prerequisite for obtaining a periodic solution. You can see
this by noting that for a one-dimensional ODE dx

dt = f(x), the value of f ′ eval-
uated at any real fixed point will itself be a real number, but for a dynamical
system of dimension 2 or higher, the eigenvalues of the Jacobian evaluated at a
fixed point might be imaginary. A periodic solution to a dynamical system is
also referred to as an “orbit”, as that’s what a drawing of it in a phase plane
will resemble. If it serves as the limit for some solution trajectories as either
time goes to ∞ or time goes to −∞, then it is referred to as a “limit cycle”
(stable and unstable, respectively). Periodic solutions that are solely composed
of sines and cosines are not limit cycles, since a dynamical system with sines
and cosines as its general solution will have each individual solution be a cir-
cle in phase space (and thus no solution curve will ever converge to another
one). However, if you have a nonlinear dynamical system that admits periodic
solutions, these will be limit cycles.

So, what is a Hopf bifurcation? Well, consider the following dynamical
system, for k a parameter:{

dx
dt = y
dy
dt = −x+ (k − x2)y

(29)

This is what we get when we transform a second-order ODE called the
Liénard equation (which is x′′ − (k− x2)x′ + x = 0) into a system of first-order
ODEs. The only fixed point for this system is the origin, as you can see by
setting up the nullclines. The Jacobian of this system evaluated at the origin is
as follows:

JF =

[
0 1
−1 (k − x2)

]
=⇒ JF(0, 0) =

[
0 1
−1 k

]
(30)

The characteristic equation for this matrix is r2 − kr + 1 = 0, so we get
solutions of the following form:

r =
k

2
±

√
k2 − 4

2
=

k

2
± i

√
4− k2

2
(31)

When the absolute value of k is small, the eigenvalues will be complex con-
jugates. If k is negative, then the real part of both eigenvalues will be negative,
so the origin will be a stable node (specifically a spiral because of the imaginary
parts). However, when k = 0, the real part disappears and we are left with pe-
riodic orbits for our solutions. What about when k > 0? We would expect the
origin to become an unstable node. However, this is only part of what actually
happens. In addition to the origin switching from stable to unstable, a limit
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cycle appears around the origin. This new limit cycle is stable, which means
that it soaks up any solution trajectory that starts somewhere near it. (In this
case, as the origin is the only fixed point and it’s unstable, any solution to our
dynamical system that starts anywhere other than the origin will converge to
this new limit cycle as time goes to ∞.) This is the result of the Hopf bifurca-
tion. The general criteria for a Hopf bifurcation are as follows. Suppose that we
have a dynamical system including some parameter k, which has a fixed point
x∗. Suppose also that there is a value of k (which we will call k0) for which all of
the eigenvalues of the Jacobian evaluated at x∗ have negative real parts, except
for one pair of eigenvalues that are purely imaginary. In other words, suppose
that this pair of eigenvalues is of the form g(k)± ih(k) in general, but for k = k0
we get g(k0) = 0 and h(k0) ̸= 0. Now, suppose further that dg

dk (k = k0) > 0.
Then, there exists some k1 such that the dynamical system in question has a
periodic orbit surrounding x∗ for k0 < k < k1. (If dg

dk (k = k0) < 0, then we
instead get an orbit for k1 < k < k0, as the values of k for which g(k) > 0 and
g(k) < 0 will be reversed.)

In practice, the existence of Hopf bifurcations means that an unstable equi-
librium in 2 × 2 systems or higher will often be surrounded by a limit cycle.
Here’s an example of a mathematical model in which they occur. Consider the
following dynamical system:{

dx
dt = −x+ ay + x2y
dy
dt = b− ay − x2y

(32)

This is the Sel’kov model of glycolysis, which is a simplified version of a more
complicated enzyme kinetic model (similar to the one that you saw earlier) after
a few biological assumptions were made about some reactions being very fast
compared to others. This model has a fixed point at (x∗, y∗) = (b, b

a+b2 ). The
Jacobian is as follows:

JF =

[
−1 + 2xy a+ x2

−2xy −a− x2

]
=⇒ JF(x

∗, y∗) =

[
−1 + 2b2

a+b2 a+ b2

−2b2

a+b2 −a− b2

]
(33)

Calculating the eigenvalues of this matrix is quite heavy on the algebra, so
I’ll omit it here. (Of course, you could also calculate them numerically.) They
will take the form of a conjugate pair, with the real part as follows:

r = g(a, b)± ih(a, b) =⇒ g(a, b) =
a+ a2 − b2 + 2ab2 + b4

−2(a+ b2)
(34)

If we want this to be zero, we will need a and b such that everything in the
numerator drops. Once again, this is algebraically rather involved, but you will
eventually end up with the following values for b as a function of a:

b(a) =

√
1

2

(
1− 2a±

√
1− 8a

)
(35)
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Note that there are two values here, in keeping with the fact that g(a, b)
has higher powers of both a and b. This means that there will be two Hopf
bifurcations. Indeed, if you plot the solutions for the Sel’kov model for a fixed
value of a and varying values of b, you will see your solutions tend towards a
stable node to start, followed by a stable limit cycle, then back to a stable node.
While the limit cycle exists, there will be an unstable node inside it (at the
same location that the stable node would be otherwise). However, this unstable
node will be essentially impossible to hit if you’re doing numerical simulations,
because the nature of floating-point arithmetic and finite step sizes means that
you will always be making slight perturbations away from any unstable fixed
point in a system that you’re simulating.
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