
MATH 228 lecture notes for November 22, 24,

and 26

Russell Milne

November 2021

1 November 22: More about periodic orbits and
the stability of fixed points

Last week, we saw some examples of periodic orbits of dynamical systems. These
are any solutions for which the trajectory of all of the state variables follows
a closed, deterministic path throughout phase space, which doesn’t have to
be defined by sine and cosine. You may recall that for the Lotka-Volterra
predator-prey system, we showed that there were periodic orbits. Here is the
Lotka-Volterra system, for reference:{

dN
dt = rN − αNP
dP
dt = βNP −mP

(1)

To determine that periodic orbits exist for this system, we first found a fixed
point for which the eigenvalues are purely imaginary, which is (x∗, y∗) = (mβ , r

α),
and noted that the nullclines of N = 0 and P = 0 made it impossible for a
solution that started in the first quadrant (i.e. with N,P ≥ 0) to leave it. Then,
we took the derivative dP

dN to represent the motion of this system in the phase

plane, then showed that integrating dP
dN resulted in a finite conserved quantity

that can be expressed as a function of N and P . This meant that solutions for
N and P in the first quadrant for which 0 < N,P < ∞ had to stay within those
bounds, and specifically follow a trajectory in the phase plane defined by what
we got when we integrated dP

dN . (Note that in Cartesian coordinates, x2+y2 = 1
defines the unit circle, and m lnN + r lnP −βN −αP = C also defines a closed
curve in the (N,P)-plane.)

We also talked about how periodic orbits can arise due to a Hopf bifurcation.
Specifically, a Hopf bifurcation can occur when all of the eigenvalues of the
Jacobian evaluated at a fixed point of a dynamical system have negative real
parts, except for two that are purely imaginary conjugates of each other. If
some parameter in the system is changed so that the two imaginary conjugate
eigenvalues shift to having positive real parts, then the fixed point in question
switches from stable to unstable, but a stable limit cycle is created surrounding
the fixed point.

1

There are a few more results that may be useful for finding periodic or-
bits. To illustrate these, suppose we have the following autonomous dynamical
system: {

dx
dt = f(x, y)
dy
dt = g(x, y)

(2)

We choose this system to be autonomous because having time dependence
can potentially throw a solution off of a limit cycle, just like with a fixed point.
Anyway, one important result concerns where orbits and limit cycles can and
cannot appear in this system’s phase plane (i.e. (x, y)-space). Any closed tra-
jectory (in other words, an orbit) of a two-dimensional dynamical system like
the one above must enclose at least one fixed point in the phase plane. Further-
more, if the orbit only encloses one fixed point, then that fixed point cannot be
a saddle. (We saw this for Hopf bifurcations, where a limit cycle must enclose
a node.) As a matter of fact, any orbit in the phase plane must enclose an odd
number of fixed points, 2n+ 1 of them for n a non-negative integer, of which n
are saddles and n+1 are either sinks (stable nodes) or sources (unstable nodes).
These findings come from a field called index theory, which is a bit beyond the
scope of this course. A handy way to remember them (which also comes from
index theory) is to say that in the phase plane, the index of a source or sink
is +1, the index of a saddle point is −1, the index of a periodic orbit is also
+1, and the sum of any curve in the phase plane (regardless of whether it is an
orbit) is the sum of the indices of any fixed points that it encloses. This method
allows us to demonstrate that a given curve in the phase plane is not an orbit (if
it has an index of anything other than +1), as well as to rule out orbits entirely
in some cases (if it is impossible to draw a closed curve with index +1).

Another result is an application of Green’s theorem (from Calculus 3) to
dynamical systems. Suppose that we have the two-dimensional dynamical sys-
tem mentioned above, and both f(x, y) and g(x, y) have continuous first partial
derivatives. Suppose also that we have some simply connected region R in the
phase plane. If the function ∂f

∂x + ∂g
∂y does not change sign anywhere in R, then

our system x′ = f(x, y), y′ = g(x, y) has no closed orbits in R. As a matter of
fact, this is a specific case of a more general result. If we pick any function u(x, y)
that is continuously differentiable, such that the function ∂

∂x (uf)+
∂
∂y (ug) does

not change sign in R, then there are no closed orbits of our system in R. This
general case is called Dulac’s criterion. It can be used to rule out periodic orbits
in regions of phase space, but one downside is that it requires coming up with
a suitable function u(x, y).

We now have some tools for determining that there are no closed orbits
in some region of the (x, y)-plane for our dynamical system x′ = f(x, y), y′ =
g(x, y). What if we want to prove that an orbit exists in some region? That one’s
a little tougher. However, we do have one result that we can use. Suppose we
have some region R in the phase plane that is bounded, contains its boundary,
does not contain any fixed points of the system x′ = f(x, y), y′ = g(x, y), and
on which f(x, y) and g(x, y) are both continuously differentiable. If there is

2

some solution trajectory that remains in R for all values of t greater than some
fixed value t0, then R contains a periodic orbit of the system. (Note that R
cannot be simply connected, since the periodic orbit in question needs to enclose
a fixed point of the system, which cannot itself be in R.) This result is called
the Poincaré-Bendixson Theorem.

So, we now have a few results on the topic of orbits that we can use. What
about fixed points? Is it possible to determine the stability of a fixed point
without having to go through all the trouble of finding the eigenvalues of the
Jacobian? (This is a very legitimate question for large systems, since computing
anything involving large matrices can get quite intense.) It turns out that there
is. One method is by finding what is called a Lyapunov function. Suppose that
we have an autonomous dynamical system of the following form:

dx1

dt = f1(x1, . . . , xn)

· · ·
dxn

dt = fn(x1, . . . , xn)

(3)

Suppose also that this dynamical system has an isolated fixed point at the
origin. (Mathematically, this means that there is some neighbourhood of the
fixed point at the origin which no other fixed points are in.) If it has one that
is not at the origin, then we can move it there by using a coordinate transform.
Now, consider a function V (x1, . . . , xn) that is “positive definite”. This means
that V is equal to zero at the origin and is positive everywhere else. Consider
also the time derivative of V :

dV

dt
=

∂V

∂x1

dx1

dt
+ . . .+

∂V

∂xn

dxn

dt
(4)

If the time derivative of V is “negative definite”, i.e. it is zero at the origin
and negative everywhere else, then the origin is a stable fixed point of the system
under consideration, and we call V a “Lyapunov function”. More specifically,
the origin will be what we call “asymptotically stable”, which means that there
exists some δ > 0 such that all solution trajectories that start a distance less
than δ away from the origin will have their distance towards the origin go
to zero in the limit case as t → ∞. (This is more or less equivalent to the
origin being a sink.) We get a stronger result if V is also radially unbounded.
“Radially unbounded” means that ||x|| → ∞ =⇒ V (x) → ∞, for some norm
|| · || and x being the vector with entries x1, . . . , xn. We can take || · || to be
any norm, so the 1-norm x1 + . . . + xn or the 2-norm (which is the Euclidean
distance) will suffice. In this case, then the origin is “globally asymptotically
stable”, which means that δ can be chosen to be any finite positive number
(and hence the origin attracts solutions that start anywhere in phase space).
If dV

dt is only negative definite in some bounded region surrounding the origin,
then we can only prove that solutions starting in that region tend to the origin.
On the other hand, if dV

dt is positive definite, then the origin is unstable. The
theory behind Lyapunov functions can produce very strong results, particularly

3

for large systems when other methods might be infeasible. However, as with
Dulac’s criterion, it requires coming up with a suitable function.

Let’s see a simple example of this. Suppose we have the following system:{
dx
dt = −x
dy
dt = −y

(5)

We know based on past experience that there is one fixed point for this
system, namely the origin, and that it is stable. Can we prove this using a
Lyapunov function? Let’s try V (x, y) = x2+y2. This is clearly positive definite,
and it is also radially unbounded, since any combination of x and y that goes to
infinity also makes V go to infinity. We will now calculate the time derivative
of V :

dV

dt
=

∂V

∂x

dx

dt
+

∂V

∂y

dy

dt
= −2x2 − 2y2 (6)

This is negative definite, so we can conclude that the origin is a globally
asymptotically stable fixed point for this dynamical system.

How about a more challenging example? Suppose we have the following
system: {

dx
dt = −x+ y2

dy
dt = 3x2 − 2y

(7)

This system has a fixed point at the origin, but it also has another one at

(x∗, y∗) =
((

2
3

)2/3
,
(
2
3

)1/3
)
. Therefore, the origin cannot be globally asymptot-

ically stable, because it cannot attract solutions that start at the other fixed
point. However, we can still try to find a Lyapunov function. Consider the
following positive definite, radially unbounded function:

V (x, y) =
x2

2
+

y2

4
(8)

The time derivative of this is as follows:

dV

dt
= −x2 + xy2 − y2 +

3

2
yx2 = −x2(1− 3

2
y)− y2(1− x) (9)

This is negative definite when x < 1 and y < 2
3 , so we at least know that

solutions that start within those bounds will tend towards the origin. (The
actual region of phase space in which solutions tend towards the origin is actually
much bigger, but this is as far as Lyapunov functions will take us.)

Another tool in our arsenal for evaluating the stability of fixed points is
the Routh-Hurwitz criterion. If we already have evaluated the Jacobian at a
fixed point, then we will be able to find the characteristic polynomial. However,
characteristic polynomials of order 3 or 4 might be hard to find roots for, and
of course any polynomial of order at least 5 cannot be solved algebraically. This
means that we need some other way to assess the stability of fixed points in

4

systems that large. Anyway, suppose that we have a characteristic equation as
follows:

anr
n + an−1r

n−1 + . . .+ a1r
1 + a0 = 0 (10)

We won’t be able to algebraically determine the roots of this polynomial if
it’s large enough, but we will be able to determine if they have negative real
parts based solely on the coefficients of the polynomial. This will be done by
using the Routh-Hurwitz stability criterion, and to use this criterion we first
need to construct a table using the coefficients called the “Routh array”. If our
characteristic polynomial is of degree n, then our table will have n rows, which
we will denote rn, rn−1, and so on down to r1. The first two rows of the table
will be constructed out of alternating coefficients in the characteristic equation,
with an being the first entry:

rn an an−2 an−4 . . .
rn−1 an−1 an−3 an−5 . . .

(11)

If we run out of coefficients for a particular row, we just let everything to
the right of the last coefficient in that row be zero. For instance, if n is even,
then the first row will end with a0, so there won’t be any coefficent that we can
put directly below a0 in the second row (so we let that entry in the second row
be zero).

To construct the rest of the rows in the table, we will use a recursive formula.
If we call the entries of the third row b1, b2, b3, and so on, then the formulae
for them are as follows:

b1 =
−1

an−1
det

[
an an−2

an−1 an−3

]
, b2 =

−1

an−1
det

[
an an−4

an−1 an−5

]
, . . . (12)

If we extend down to the fourth row, the entries (which we can call c1, c2,
c3, etc.) will follow a similar pattern:

c1 =
−1

b1
det

[
an−1 an−3

b1 b2

]
, c2 =

−1

b1
det

[
an−1 an−5

b1 b3

]
, . . . (13)

Eventually, the Routh array will look like this, with q denoting the last entry
obtained from this process:

rn an an−2 an−4 . . .
rn−1 an−1 an−3 an−5 . . .
rn−2 b1 b2 b3 . . .
rn−3 c1 c2 c3 . . .
...

...
...

...
. . .

r0 q 0 0 0

(14)

The entries in any given row (besides the first two) will depend on the
entries in the two rows directly above it. Additionally, when calculating any

5

given entry, the left-hand column of the determinant in the formula for that
entry will include the first entries in each of the two rows directly above the
row that is being created, and the right-hand column of the determinant will
gradually move right in terms of which entries it contains. The determinant will
always be divided by the negative of the first entry in the row directly above
the one currently being created. Mathematically, if we denote the Routh array
as a matrix M, then we get the following formula for mi,j , for i > 2:

mi,j =
−1

m(i−1),1
det

[
m(i−2),1 m(i−2),(j+1)

m(i−1),1 m(i−1),(j+1)

]
(15)

Now that we have our Routh array, we can use the actual Routh-Hurwitz
criterion. The number of times that the sign of an entry in the first column
is different than the sign of the entry directly above it is the number of roots
that the characteristic polynomial has with positive real parts. Therefore, if
the entries in the first column of the Routh array are either all positive or all
negative, then the fixed point in question is stable. A simplified version of this
criterion for second-order polynomials r2 + a1r + a0 is that the polynomial’s
roots will all have negative real parts if and only if a1 and a0 are both positive.
For third-degree polynomials r3 + a2r

2 + a1r + a0, we need a2 and a0 to both
be positive and a2a1 > a0.

2 November 24: Floating point arithmetic, Eu-
ler’s method, and error bounds

Previously, we have learned about dynamical systems that may be hard or im-
possible to solve by hand. This is generally because they are nonlinear. Despite
this, these kinds of dynamical systems make up the vast majority that you will
encounter in real life, and so finding solutions to them is important. Therefore,
we can use various numerical methods to approximate the solutions to the dy-
namical systems in question. Numerical integration is just one part of the field
of numerical analysis, which also includes things like methods for approximating
the eigenvalues of a matrix (which I will touch upon later on in this course).

In general, numerical integration of systems of differential equations relies
on starting from a known quantity (i.e. the initial condition of the system), then
using the rates of change of each state variable to approximate what a solution
will look like afterwards. This process can be iterated over and over again to
build a curve that approximates the analytical solution. One very simple way
to illustrate this is with Euler’s method. Suppose we have the following very
simple one-dimensional ODE with an initial condition:

dx

dt
= f(t, x), x(t = 0) = x0 (16)

We can express dx
dt as a limit, using the form that you learned in Calculus 1.

Using this, the ODE becomes the following:

6

lim
h→0

x(t+ h)− x(t)

h
= f(t, x) (17)

However, we will not take this limit, and instead assume that h is a very
small number. We can then do some algebra to get the following:

x(t+ h) = x(t) + hf(t, x) (18)

Now, we have a formula in which we can use x(t), the value of our solution
at the current time, and f(t, x), the derivative evaluated at the current time,
to find x(t + h), the value of the solution at some time in the future. This is
a recurrence relation, so we’ll need something to start with. An obvious choice
would be x0, since that was provided for us in the problem. We can use that
to get xh, then x2h, x3h, and so forth. In higher dimensions, the formula still
holds, although our inputs and outputs will be vector-valued:

dx1

dt = f1(t, x1, . . . , xn)

· · ·
dxn

dt = fn(t, x1, . . . , xn)

=⇒

x1(t+ h) = x1(t) + hf1(t, x1, . . . , xn)

· · ·
xn(t+ h) = xn(t) + hfn(t, x1, . . . , xn)

(19)
Now that we have this tool for approximating solutions, let’s see if it works.

We will test it out on an ODE that we know the solution to:

dx

dt
= x2, x(t = 0) = −1 (20)

We can solve this analytically to get x(t) = −1
t+1 , which has a simple func-

tional form for us to compare our answers with. Now, let’s do a few steps
of Euler’s method. We’ll start with h = 0.1 as our step size, to keep things
tractable for now. We get the following:

x(0) = −1
x(0.1) = −1 + 0.1 · (−1)2 = −0.9
x(0.2) = −0.9 + 0.1 · (−0.9)2 = −0.819
x(0.3) = −0.819 + 0.1 · (−0.819)2 ≈ −0.752

(21)

Now, let’s compare this to the actual values of our solution, to see how well
we did. Here are the actual values of x(t) at the points that we specified:

x(0) = −1
x(0.1) = −1

0.1+1 ≈ −0.909

x(0.2) = −1
0.2+1 ≈ −0.833

x(0.3) = −1
0.3+1 ≈ −0.769

(22)

It’s not terrible; we do capture the overall trend (increasing towards zero at a
decreasing rate) as well as one digit of accuracy following the decimal point. The
reason why we don’t get closer estimates is mainly because we used a relatively

7

large step size. We can see this by considering the Taylor expansion of x(t)
around some point t0:

x(t) = x(t0) + x′(t0)(t− t0) +
x′′(t0)

2
(t− t0)

2 +O(t3) (23)

Now, take t = t1 for some time t1 > t0:

x(t1) = x(t0) + x′(t0)(t1 − t0) +
x′′(t0)

2
(t1 − t0)

2 +O((t1 − t0)
3) (24)

We can specify h = t1− t0, and we also know that x′(t0) = f(t0). Therefore,
the first two terms of the Taylor series turn into one step of Euler’s method,
and we get the following:

x(t0 + h) = x(t0) + hf(t0) +
x′′(t0)

2
h2 +O(h3) (25)

Note that the t2, t3, etc. terms in the Taylor series will turn into h2, h3,
etc., since the dependence is now on (t1 − t0) = h. We ignore everything from
the third term onward when we perform a step of Euler’s method, but those
terms are still necessary parts of the solution (since the Taylor expansion is an
infinite sum). Therefore, the difference between the real value of x at t = t0+h
and our simulated value (which we will call x1, by analogue with x(t0) = x0) is
the following:

LTE = x(t0 + h)− x1 =
x′′(t0)

2
h2 +O(h3) (26)

This is specifically the error that accumulates by taking one step with Euler’s
method, which we call the “local truncation error” (hence “LTE” above) because
it results from truncation of the Taylor series. If we assume that h < 1, which
is more or less always the case, then we get h2 > hn ∀n > 2. This allows us to
combine the later terms in the Taylor series, and say that the local truncation
error is on the order of h2. (This holds so long as the third derivative x′′′ is
bounded, since if it isn’t, then we can’t assume that the later terms in the
Taylor series are less prominent than the h2 term.) What about the overall
error present in the approximation? In other words, how different will the curve
that we simulate be from the actual solution? Well, if the beginning of our
simulations is the point t0 that we already specified, and we run the simulations
until some other time tfinal, then the total number of steps is 1

h (tfinal − t0).
Therefore, if there is O(h2) error in every step, then the total amount of error
(the “global truncation error”) will be the following:

GTE =
tfinal − t0

h

x′′(t0)

2
h2 = O(h) (27)

This is, as we can see, proportional to h. Therefore, the smaller we take h,
the less truncation error (local and global) we get. Since the global truncation
error is proportional to the first power of h, i.e. h1, we say that Euler’s method

8

is a “first-order method”. (If the global truncation error depended on h2, it
would be a second-order method, and so on.) What if we instead increased the
step size, for instance taking h = 1? If we simulate the same ODE as before,
we will get the following:

x(0) = −1
x(1) = −1 + 1 · (−1)2 = 0
x(2) = 0 + 0 = 0

(28)

Having too big of a step size can make the method break down completely.
In practice, your step size usually shouldn’t be anywhere near h = 1; I mostly
use h = 10−3 myself if I don’t need extra precision.

However, even though we showed that taking lower values for h leads to
lower truncation error, that doesn’t mean that we always need to choose as low
a value for h as possible. There are a couple important reasons for this. The
first one is that smaller h means more steps that need to be computed, which in
turn means that your numerical integration will take more time. (One way to
balance this is to integrate your dynamical system with two different values of
h, one being the value that you are using and the other being a value one order
of magnitude greater. If the difference between the two solutions produced is
acceptably small, then it’s probably fine to use the larger value of h to save
computation time.)

The other reason that lower h is not always better also has to do with the
number of computations performed. Computers only have a finite amount of
memory, and base-10 numbers are stored in a computer’s memory in the form
of base-2 approximations with a finite number of digits. This means that there
are only a finite number of computer-representable numbers, and hence in most
cases, the computer representation of a decimal number will not be the same
as the form that we would write out by hand. Because of this, mathematical
operations done on a computer will typically lose a small amount of accuracy,
due to having to round off the operation’s output to something which is repre-
sentable by the computer. This is called “round-off error”. An example of this
is as follows. Consider the decimal number 0.1, or (0.1)10. When converted into
binary, it has an infinite number of decimal places:

(0.1)10 = (0.00011001100110011 . . .)2 (29)

This means that representing it on a computer (with finite precision as op-
posed to infinite precision) must necessarily eliminate all of its digits after a
certain point, resulting in error. A corollary of this is that two numbers that
differ by less than the computer’s precision will be represented as the same
number. For example, suppose we have a very primitive computer that can
only handle five binary digits after the decimal point (i.e. up to 2−5). This
computer’s representation of (0.1)10 would be (0.00011)2, but that would be
the same as the representation of (for instance) (0.1 + 2−6)10. In this way,
two operations on our primitive computer that have expected outputs of (0.1)10
and (0.1 + 2−6)10 would in practice be indistinguishable. If h is large, or at

9

least fairly large, the total amount of round-off error will be at least an order
of magnitude smaller than the truncation error. However, if h is sufficiently
small, round-off errors will build up and cause substantial total error if many
computational steps are performed. Therefore, an ideal value for h would be
not too large and not too small.

Previously, we found that the global truncation error of Euler’s method was
proportional to h. Do methods exist that have greater accuracy for a given step
size? Yes, in fact there are several. One of the most commonly used ones is the
Runge-Kutta fourth-order method, or RK4. Since this is a fourth-order method,
its global truncation error will be O(h4), and by extension its local truncation
error will be O(h5). This is much more accurate than Euler’s method, which is
first order and therefore has a global truncation error of O(h).

So, how does the fourth-order Runge-Kutta method work? The main concept
behind it is that we will predict the next step in our numerical solution, x(t+h),
by using a weighted average of the predicted slopes of x in the interval [t, t+h].
It’s more accurate for the same reasons that the trapezoidal rule is more accurate
than the various rectangular approximation methods for calculating integrals,
or why Simpson’s method is more accurate than the trapezoidal rule. RK4
takes a weighted average of four different slopes in this interval. This means
that the recurrence relation for getting the next step of a solution in RK4 has
four terms with h in them. The specific formulation of RK4 is as follows, for an
ODE x′ = f(t, x), an initial condition x(t = 0) = x0, and the assumption that
each step advances time t by h units:

xn+1 = xn + h
(
1
6k1 +

1
3k2 +

1
3k3 +

1
6k4

)
k1 = f (tn, xn)
k2 = f

(
tn + h

2 , xn + k1
h
2

)
k3 = f

(
tn + h

2 , xn + k2
h
2

)
k4 = f (tn + h, xn + k3h)

(30)

Note that k1 is linear in terms of h, k2 involves taking h times k1 and is thus
quadratic in h, and likewise k3 and k4 are cubic and quartic in h, respectively.
This is what makes the local truncation error on the order of h5 (and hence
the global truncation error on the order of h4 once we multiply by 1

h (t − t0)).
Let’s iterate this a few times with the differential equation we looked at earlier
(x′ = x2, x(0) = −1) and see if it does better than Euler’s method. I’ll omit
the algebra that takes place in terms of calculating the steps, and just show you
the results, to ten decimal places this time:

x(0) = −1
x(0.1) ≈ −0.9090911863
x(0.2) ≈ −0.8333337288
x(0.3) ≈ −0.7692312058

(31)

In this case (and in general), RK4 does indeed do better than Euler’s method,
and by a considerable margin. The actual solution values are (to ten decimal

10

places) -0.9090909091, -0.8333333333, and -0.7692307692, which means that we
get five digits of accuracy even with a relatively large step size of h = 0.1.

3 November 26: Multistep methods, stiff equa-
tions and stability

In the previous lecture, we looked at the fourth-order Runge-Kutta method,
which is probably the most widely-used numerical integration scheme in the
majority of cases. However, there are some cases where other methods may
be desired. For instance, certain ODEs may have solutions that change very
rapidly in time, such that accurately approximating a solution may be impossi-
ble without taking an extremely small step size. These are called “stiff” ODEs,
and methods such as Euler’s method may have trouble solving them. For stiff
ODEs, we need to use methods that can handle these sharp changes in the so-
lution; the ability of a numerical integration method to do this is referred to as
its “stability”.

For an illustrative example, consider the ODE x′ = −100x with initial con-
dition x(0) = 1. This has an analytical solution of x(t) = e−100t, and it should
therefore decay to 0 quite quickly. What happens when we attempt to use
Euler’s method on it, with a step size of 0.1?

x(0) = 1
x(0.1) = 1 + 0.1(−100 · 1) = −9
x(0.2) = −9 + 0.1(−100 · −9) = 81
x(0.3) = 81 + 0.1(−100 · 81) = −729

(32)

Instead of monotonically converging to 0, our simulated solution diverges
while oscillating about the horizontal axis, which is the opposite behaviour of
what we wanted. It turns out that Euler’s method is not particularly stable
when stiff equations are concerned. One way to see this is the concept of “A-
stability”. A numerical integration scheme is A-stable if it successfully captures
the fact that all ODEs of the form x′ = kx, for k a constant with negative
real part, tend to zero as t → ∞. A related concept is that of the “stability
region” of a numerical integration scheme. For a numerical scheme that takes
xn+1 to be a function of xn, integrating a test function of the form used in the
definition of A-stability (namely x′ = kx) means that the method of producing
xn+1 from xn will depend on the step size h and the constant k. As a matter
of fact, for functions of this type, it will invariably depend on their product
hk. Therefore, we can say that xn+1 = u(hk)xn for some function u, with the
specific function depending on the numerical scheme used. It can clearly be
seen that if |u(hk)| < 1, then |xn+1| < |xn|, and the simulated solution x will
go to zero. The stability region for a numerical scheme is the set of complex
numbers z such that |u(z)| < 1, with the implication that for a specified test
function x′ = kx and step size h, we can check if the numerical scheme defined
by u(z) = u(hk) produces a solution that converges to zero. It follows that

11

an A-stable numerical integration scheme is one for which the stability region
includes the entire left half of the complex plane (i.e. all complex numbers with
negative real parts), as that means that a simulation of x′ = kx will converge
to zero for any k with negative real part, regardless of the step size h.

Let’s see an example of this. We have previously attempted to solve a
stiff equation using Euler’s method, so we’ll find the stability region of Euler’s
method first. The recurrence relation defining Euler’s method is xn+1 = xn +
hf(xn), so for f(x) = kx, we have xn+1 = xn + hkxn = xn(hk + 1). It
follows that the function used for finding the stability region is u(hk) = hk+1,
or u(z) = z + 1. Therefore, the actual stability region for Euler’s method
is {z ∈ C : |z + 1| < 1}. This does not encompass all complex numbers with
negative real parts, so Euler’s method is not A-stable. We can also see that for
h = 0.1 and k = −100, we get hk = −10 and |hk + 1| = 9 > 1, confirming
what we saw earlier that Euler’s method with a step size of h = 0.1 cannot
successfully integrate the ODE x′ = −100x. (In fact, the values taken by x
during our simulations went up by a factor of 9 with every step, as the stability
region calculations show.)

How about the fourth-order Runge-Kutta method? Expanding out the var-
ious coefficients that make up the method give us the following recurrence rela-
tion for xn+1 as a function of xn:

uRK4(z) = 1 + z +
z2

2
+

z3

6
+

z4

24
(33)

Note that this agrees with the Taylor expansion up to the fourth-order term,
which is necessary for RK4 to be a fourth-order numerical integration scheme.
The region of stability for RK4 is the area in which |uRK4(z)| < 1. Because
uRK4(z) is a fourth-degree polynomial function of z, it would be hard to graph
this by hand (although you could do so using mathematical software). However,
the most important thing is that the stability region does not cover all complex
numbers with negative real parts. This means that RK4 is also not A-stable,
and therefore that you will need very small step sizes to accurately capture the
dynamics of very stiff systems using RK4. For the example that we used before
with z = hk = 0.1 · −100 = −10, we get the following:

|uRK4(−10)| = 1− 10 +
100

2
− 1000

6
+

10000

24
= 291 > 1 (34)

This one surprisingly does even worse than Euler’s method, although it would
be more manageable if we decreased the step size. (Remember that if z = hk <
1, then zn < 1 for n > 1.) What if we wanted a method that was A-stable, or
in other words that it would integrate problems of this type well regardless of
the choices of h and k? This can actually be done, and it can be done relatively
easily. The numerical integration schemes that we would use to satisfy such
a constraint are all what we call “implicit methods”, so named because when
evaluating xn+1, they do so using an implicit formula that includes xn+1 and
xn instead of providing xn+1 as an explicit function of xn. One extremely
straightforward implicit method is the implicit Euler method, also called the

12

backward Euler method. This is nearly identical to the (forward) Euler method,
but with one very important distinction. Remember that the forward Euler
method defines xn+1 as being xn+1 = xn + hf(xn), or xn+1 = xn + hf(tn, xn)
for a time-dependent ODE x′ = f(t, x). The implicit formula for the backward
Euler method is as follows:

xn+1 = xn + hf(tn+1, x(tn+1)) = xn + hf(tn+1, xn+1) (35)

The derivation of this comes from the concept of integrating dx
dt to get x. If

we take a definite integral of dx
dt = f(t, x) from time tn to time tn+1 = tn + h,

then we can evaluate it to get the following:∫ tn+1

tn

f(t, x(t)) dt = x(tn+1)− x(tn) = xn+1 − xn (36)

However, we can also use a very simple Riemann sum (just one rectangle)
to approximate the integral above. Taking the value of the function f at the
left-hand bound of the interval would just result in the forward Euler method,
so we’ll use the value on the right-hand bound. Since the length of the interval
that we are integrating over is h, we get the following approximation:∫ tn+1

tn

f(t, x(t)) dt ≈ hf(tn+1, x(tn+1)) = hf(tn+1, xn+1) (37)

Putting these together yields the formula for the backward Euler method, as
described above. As this is an implicit formula, we will need to use the specific
form of f to isolate xn+1. Obviously, this may be challenging if f is complicated.
Is the backward Euler method A-stable? Let’s check the function defining its
stability region. If we assume that f takes the form f(x) = kx, we get the
following:

xn+1 = xn + hf(xn+1) =⇒ xn+1(1− hk) = xn =⇒ u(z) = (1− z)−1 (38)

We can see that |u(z)| < 1 when 1 < |1 − z|. This is true for all z with
negative real parts, and even most z with positive real parts. Therefore, the
backward Euler method is A-stable, although it may produce other inaccuracies
depending on the step size chosen. However, we do have better options available
to us. Since Euler’s method is based on the rectangle rule for approximating an
integral, maybe a better method than the rectangle rule would produce a better
numerical integration scheme. How about the trapezoid rule? If we perform the
same steps as we did to derive the backward Euler method, but approximate
the integral of f(t, x(t)) using the trapezoid rule instead of the rectangle rule,
we get the following formula relating xn+1 and xn:

xn+1 = xn +
h

2
(f(tn, xn) + f(tn+1, xn+1)) (39)

13

This is the trapezoidal method for integrating ODEs, and it is also an implicit
method. Note that we’re averaging the values of f at tn and tn+1, hence the
factor of 1

2 (in addition to the step size h). This makes the trapezoidal method
a “multistep method”, since the equation xn+1 − xn that defines how much our
solution will change by depends on the value of x at multiple different locations.
So, how does this method do when evaluating stiff problems? We will calculate
the region of stability for it to find out. If we assume that f(x) = kx, our
formula for the trapezoidal method can be rewritten as the following:

xn+1 = xn +
h

2
(kxn + kxn+1) (40)

Solving for xn+1 yields the following:

xn+1 =
1 + 1

2hk

1− 1
2hk

xn =⇒ u(z) =
1 + 1

2z

1− 1
2z

(41)

In order for |u(z)| to be less than 1, we need that |1 + 1
2z| < |1 − 1

2z|.
However, this is true whenever z is closer to -1 than to 1, or in other words
the entire left half of the complex plane. From this, we get the result that the
trapezoidal method is A-stable. We also get the stronger condition that for any
ODE x′ = kx, the simulated solution of that ODE using the trapezoidal method
will converge to zero if and only if the actual solution does.

So, we now have a method that has been shown to work very well for stiff
dynamical systems. The trapezoidal method is second-order; its local truncation
error can be found to be O(h3), and therefore its global truncation error is
O(h2). Can we improve upon this to get better accuracy (like we improved on
the forward Euler method to get RK4), while keeping A-stability? The answer
to this is actually that we can’t. Explicit multistep methods cannot be A-stable,
and implicit multistep methods that are third-order or higher can also never be
A-stable. This result was proved by Germund Dahlquist in 1963 and is known
as the second Dahlquist barrier. (This means that you have actually seen a
result proved in the last 50 years in this class!)

Now that we know a good way to approach stiff dynamical systems, where
can we expect to encounter them in real life? One important class of dynamical
systems that may be stiff is those that contain a separation of timescales, when
some processes that make up the system happen orders of magnitude more
quickly than others. Here is a simple example of this, for ε a very small constant:{

dx
dt = f(x, y)

εdy
dt = g(x, y)

(42)

Some chemical reaction networks contain ODEs that are on a faster timescale
than the rest of the system like this, and population dynamics in which some
species have much faster life cycles than others can also be modelled in this
way. Additionally, most dynamical systems used in neuroscience are stiff. This
is because they model (among other things) the electrical potential found in a

14

neuron, which undergoes a large spike when the neuron fires. This, however, is
a topic for next week.

15

