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1 November 29: Hodgkin-Huxley and FitzHugh-
Nagumo models; constructing a model from
first principles

Now that you’ve seen some of the theory behind differential equations, I will
spend the last few lectures telling you about some examples of how they are
used in real life. This should also give you some insight on how mathematical
models are created; one of the purposes of this particular lecture is to show
how one can build a model from first principles. One of the first, and most
important, examples of a mathematical model is the Hodgkin-Huxley model of
electrical activity in a neuron. This was created in 1952 by Alan Hodgkin and
Andrew Huxley, and was fitted to real experimental data that they obtained
by measuring the voltage along the giant axon of a squid. (The axon is giant,
not the squid. Action potentials in the neuron that this particular axon is
part of cause the squid to contract some of its muscles to expel water from its
body, which propels the squid forward very rapidly and can allow it to escape
potentially harmful situations.)

Since this is an electrical model, most of the theory behind it is based on
electrical circuits. In particular, most of the terms in the Hodgkin-Huxley model
consist of voltages and currents. For a brief explanation of how these are related,
consider a capacitor in a circuit, which stores charge when a voltage is applied
to it. Specifically, if a constant C represents the capacitance (the relative ability
of the capacitor to store charge), then the charge Q stored by the capacitor can
be expressed as a function of the applied voltage V :

Q(t) = C · V (t) (1)

The derivative of Q is the current intensity (or just “current”) across the
capacitor. To get this, we can take the derivative of both sides, which gives an
expression in terms of dV

dt :

I(t) = C · dV
dt

(2)
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Indeed, within the context of the Hodgkin-Huxley model, the lipid bilayer
that makes up most of the cell membrane of the squid giant axon is treated
as a capacitor. Thus, if Vm represents the axon’s “membrane potential” (the
difference in electric potential between the inside and outside of the axon), the
current flowing across the lipid bilayer Ic can be written as the following:

Ic = Cm
dVm

dt
(3)

However, there are other ways in which ions can move in and out of the cell,
which of course have implications for the electrical current. Two of the most
important ions in animal cells are sodium and potassium. This is because ani-
mal cells maintain a roughly constant electrical potential by exporting sodium
ions and importing potassium ions, causing both sodium and potassium ions
to usually have a substantial gradient between the inside of the cell and the
outside. For a given ion i, the “reversal potential” Vi is the membrane potential
at which there is no net flow of the ion into or out of the cell. This means that
ions contribute to the electrical current across the cell membrane depending on
how much the actual membrane potential differs from each ion’s reversal po-
tential. Additionally, the transport of ions across a cell membrane is carried
out by ion channels, which can be thought of electrically as conductors, as they
facilitate electrical current flowing into or out of the cell. For a given ion i, the
conductance of the ion by its associated ion channel can be expressed as some
quantity gi. We know that conductance is equal to current divided by voltage:

G =
I

V
(4)

We can therefore model the current generated by a particular ion like this,
for i the ion in question and Vm the membrane potential:

Ii = gi(Vm − Vi) (5)

Because sodium and potassium are the most important ions in the neuron
that the squid giant axon is part of, Hodgkin and Huxley assumed that there
would be two “voltage-gated channels” in the cell membrane (one for each of
those two ions) that the neuron would use to actively regulate its ion concen-
trations, as well as a “leak channel” representing the ability of ions to passively
diffuse across the cell membrane. (Note that other ions, such as calcium to
give one example, are also important, and indeed other neuron models may use
different ions than the Hodgkin-Huxley model does.) The leak channel was as-
sumed to have constant conductance, while for the voltage-gated channels, the
conductance was assumed to change based on how open the channel in ques-
tion was. The calculations for the conductances of the sodium and potassium
channels were approached differently. Hodgkin and Huxley assumed that the
conductance for the potassium channel would be proportional to some variable
n associated with the activation of that channel, and that the conductance of the
sodium channel would be proportional to variables m and h associated with the
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activation and inactivation (respectively) of that channel. The three variables
n, m, and h were all assumed to be on a scale from 0 to 1, and all of them are
dimensionless quantities rather than concentrations of specific molecules that
would activate or inhibit the ion channels. Hence, the assumption was that the
neuron would regulate its ion concentrations by undergoing cellular processes
that increase or decrease n, m or h. (These would correspond to terms in dn

dt ,
dm
dt , and

dh
dt .) These processes are very complicated, so the actual differential

equations in the model for dn
dt ,

dm
dt , and

dh
dt were assumed to vary directly based

on the membrane potential Vm rather than introducing more variables repre-
senting molecules involved in cell signaling. Specifically, functions αn, βn, αm,
βm, αh, and βh (which all take as input Vm) were introduced to model the
increases and decreases of n, m and h. Putting everything together yields the
following model (note that I = Ic + IK + INa + Il is the sum of the currents
previously explained):


I = Cm

dVm

dt + ḡKn
4(Vm − VK) + ḡNam

3h(Vm − VNa) + ḡl(Vm − Vl)
dn
dt = (1− n)αn(Vm)− nβn(Vm)
dm
dt = (1−m)αm(Vm)−mβm(Vm)
dh
dt = (1− h)αh(Vm)− hβh(Vm)

(6)

The functions causing the increases and decreases in the three dimensionless
variables n, m and h were fitted by Hodgkin and Huxley to real data that they
obtained in lab experiments. They were empirically determined to have the
following forms, for Vr the resting potential of the neuron:

αn(Vm) = 0.01(10+Vr−Vm)
exp (0.1(10+Vr−Vm))−1 βn(Vm) = 0.125 exp (Vr−Vm

80 )

αm(Vm) = 0.1(25+Vr−Vm)
exp (0.1(25+Vr−Vm))−1 βm(Vm) = 4 exp (Vr−Vm

18 )

αh(Vm) = 0.07 exp (Vr−Vm

20 ) βh(Vm) = 1
exp (0.1(30+Vr−Vm))+1

(7)

Note how the forms of the α and β functions are different for h compared
to the other two, due to the slightly different biological role played by h. This
system is 4-dimensional and highly nonlinear, so analytical solutions of it are
impossible. However, a fixed point can be found, and the Jacobian of the system
can be evaluated at it. Doing so reveals that there are two negative eigenvalues
and two complex eigenvalues, which means that the preconditions for a Hopf
bifurcation in the Hodgkin-Huxley model are satisfied. Most of the parameters
in the model are biologically determined and therefore not easily manipulated,
but taking the current I as a bifurcation parameter can cause the real parts of
the two imaginary eigenvalues to switch from negative to positive. This Hopf bi-
furcation represents a change in model behaviour from the membrane potential
reaching an equilibrium to the membrane potential exhibiting a periodic solu-
tion with sharp spikes in voltage. Biologically, these represent action potentials,
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also known as when the neuron is firing. The spikes in voltage bear almost no
resemblance to sine waves. Periodic oscillations of this type, with sharp rather
than gradual increases or decreases, are known as “pulse-relaxation oscillations”
or simply “relaxation oscillations”, following electrical engineering terminology.
(If parameters are chosen such that the periodic solution does not exist, but the
system is sufficiently close to the Hopf bifurcation, then the transient dynam-
ics of Vm before reaching equilibrium will resemble one period of the periodic
solution; biologically speaking, this is a single action potential.) Note that in
general, pulse-relaxation oscillations occur when there is some separation in
timescales between different variables in a model.

Owing to the success of the Hodgkin-Huxley model, many other mathemat-
ical neuron models have been proposed over the years. This includes models
in which many neurons are coupled together in one system; since ions can be
transmitted between neurons via their synapses, the electrical potential in one
neuron in such a system will depend on the electrical potential in any neurons
that are upstream from it. For instance, a dynamical system modelling three
neurons might look like this, for i = 1, 2, 3:


Ii = Cm

dVm,i

dt + ḡKn
4
i (Vm,i − VK) + ḡNam

3
ihi(Vm,i − VNa) + ḡl(Vm,i − Vl) + Isyn,i

dni

dt = (1− ni)αn(Vm,i)− niβn(Vm,i)
dmi

dt = (1−mi)αm(Vm,i)−miβm(Vm,i)
dhi

dt = (1− hi)αh(Vm,i)− hiβh(Vm,i)

(8)
If we take i = 1, 2, 3, then this is a twelve-dimensional system, since each of

the three neurons in the system has its own internal dynamics (and hence its
own values for Vm, n, m, and h). However, the voltage in a given neuron may
increase or decrease based on the voltages of other neurons that are connected
to it via a synapse. Here, the term Isyn,i for i = 1, 2, 3 (in other words, Isyn,1,
Isyn,2, and Isyn,3) represents the amount of current that neuron i receives by
virtue of having a synaptic connection with the other neurons. This is the way
that electrical activity can propagate along many different neurons, causing
signals to be transmitted through the entire nervous system.

Another important consequence of mathematical research on ODEs in neu-
roscience is the development of a way to reduce the differential equations for
oscillatory quantities (i.e. any state variable in a dynamical system that has
a periodic solution) to differential equations describing how far along in their
periods these quantities are. (In other words, we would be describing the phase
of each state variable.) This is well beyond the scope of this course, although
the synchronization of voltages in different neurons as well as other oscillatory
variables (i.e. determining when the differences in their phases go to zero) is an
active area of current research.
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2 December 1: SIR model; fitting a model to
data

The event with the highest global impact in recent years is arguably the COVID-
19 pandemic. Throughout the world, much of the response to Covid has been
driven by mathematical models. Specifically, variations on one particular dy-
namical system model have been used to predict caseloads and deaths; this
model is the SIR model. In addition to Covid, the SIR model has been used to
make predictions regarding many other infectious diseases. Constructing this
model from first principles is not very challenging. We start from the assump-
tion that everyone in the population belongs to one of three categories, which
are susceptible to infection, infected, and recovered from or resistant to infec-
tion (hence the name “SIR”). We therefore have three state variables S, I,
and R, which represent the proportions of the population that belong to each
group. The rates of change of each of these model components represent ways
that a person can transition between categories, such as a susceptible person
becoming infected or an infected person recovering. This style of dynamical
system model, in which the state variables are categories of some kind, is called
a “compartmental model”.

So, how do we construct such a model? To start, we will look at one of the
most basic cases: the standard SIR model without any added bells and whistles.
We will assume that the total population of wherever we’re studying is constant,
because population growth takes place over a longer timescale than disease
spread. (In other words, we are assuming that total population is at equilibrium
relative to S, I and R.) We will also assume only two events of interest in
the system: a susceptible person catching the disease, and an infected person
recovering. Assuming that the disease spreads by person-to-person contact,
the rate at which a susceptible person can become infected is proportional to
how often a person in the category S encounters someone in the category I.
As we have previously seen with predator-prey models, this is an interaction
term and hence scales with both S and I. Contact is also more frequent if
the total population is smaller (and vice versa) as a smaller population means
more opportunities for the same people to bump into each other. Taking the
population size to be S + I + R = N , we get the interaction term describing
the process of a susceptible person becoming infected to be β

N SI. This term

is added to dI
dt and subtracted from dS

dt , as it represents someone leaving the
susceptible category and entering the infected category. Finally, we will assume
that infected people recover at some rate γ. This means that the total number
of people leaving the infected category and entering the recovered category per
unit time is γI. Putting these together yields the following system:

dS
dt = −βSI

N
dI
dt = βSI

N − γI
dR
dt = γI

(9)
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One thing that we can immediately notice (and that we assumed during the
derivation of the model) is that the total population is some constant N , and
hence a conserved quantity. Therefore, we can reduce the dimensionality of this
system by 1, which we can easily do by considering R = N − S − I since R
does not occur in any of the three ODEs making up the model. Taking N = 1,
as is often done, means that the state variables represent percentages of a total
population. This also means that the model does not output fractional numbers
of people, although the presence of this behaviour is not typically viewed as a
problem since all models are approximations in the first place. We therefore can
get the following, the simplest form of the SIR model:{

dS
dt = −βSI
dI
dt = βSI − γI

(10)

This is simpler than the Hodgkin-Huxley neuron model, or even the Lotka-
Volterra predator-prey model, and we can determine a lot about its behaviour
analytically. For instance, we can find its fixed points. Based on the equation
for dI

dt , we need βSI = γI, which is true if I = 0 or S = γ
β . However, if

I ̸= 0, then we get a nonzero value for dS
dt (and also dR

dt ). This means that
I = 0 is a requirement for a fixed point of this model, but there are no other
requirements, so (S∗, I∗, R∗) = (k, 0, 1 − k) is a fixed point for any k ∈ [0, 1].
The interpretation of this is that the epidemic will stop when there are no more
infectious people to spread the disease, which is very intuitive.

One important part about the model is the rate of change of the infected
component, since that will determine whether the epidemic under consideration
will spread or die out. To examine this, we will consider a population that
starts out entirely susceptible (i.e. S(t = 0) = 1). Now, suppose that a disease
is stochastically introduced into this population. In other words, suppose that
we perturb S and I by −ε and +ε, respectively, where ε is a number very close
to zero. This means that S is still approximately 1, but I is now nonzero and
the rates of change in the model involving I are also nonzero. In particular, we
now have the following for the rate of change of I:

dI

dt
≈ (β − γ)I (11)

From this, we can tell that the infection will spread if β > γ, since dI
dt will be

positive in that case. Likewise, if γ > β, the infection will die out, as the rate
at which people get infected will be less than the rate at which infected people
recover. Since 2020, you will have undoubtedly heard the term “R-naught”,
or “R0”, many times in describing how capable a disease is of spreading. It is
actually a term taken directly from this model:

R0 =
β

γ
(12)

As you may already know, a value of R0 above 1 means that a disease will
spread, while a value of R0 below 1 means that it will die out. This makes
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R0 the most important quantity represented in the model; in epidemiology, de-
termining R0 for a given disease is often the main goal of research. Another
important feature of the model is that since γ represents the rate at which in-
fected individuals recover per unit time, the quantity γ−1 represents the average
length of time that a person stays infected for. Likewise, βS can be thought of
as the number of people that an infected person can themselves infect per unit
time, and hence an interpretation for β is the number of contacts an infected
person has over a given length of time multiplied by the probability of each
contact becoming infected. This means that both β and γ can be input into the
model from real data, which I’ll explain more about later.

One important thing about the SIR model is the fact that its simplicity
makes it endlessly customizable. Diseases are very heterogeneous in terms of
their effects and characteristics, and this can be reflected by adding new terms
to the basic SIR model. For example, suppose that recovery from a particular
disease does not grant immunity to that disease going forward. This can be
reflected by turning the SIR model into what might be referred to as an SIS
model: {

dS
dt = −βSI + γI
dI
dt = βSI − γI

(13)

This is even simpler, and can actually be solved analytically after reducing
the model to one dimension based on the conserved quantity S + I = 1. (You
can do this on your own time if you want.)

So far, we have assumed that nobody actually dies from the disease, which
is obviously an inaccurate assumption to make. What if they do? This can be
represented by adding a new state variable D (for “dead”), and an additional
term to dI

dt : 
dS
dt = −β SI

N
dI
dt = β SI

N − γI − µI
dR
dt = γI
dD
dt = µI

(14)

Here, µ is (as you might be able to guess) the mortality rate of the disease.
Note that this version of the model also explicitly brings back N = S + I +R,
since the assumption that the population is constant over time is now broken.

Alternatively, suppose that when someone is exposed to a particular disease,
there is some latency period during which they do not show symptoms of the
disease and cannot infect other people. This additional state can be accounted
for by introducing another state variable (E for “exposed”) to the model. We
could then end up with something like this:
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dS
dt = −β SI

N
dE
dt = β SI

N − αE − γE
dI
dt = αE − µI − γI
dR
dt = γE + γI
dD
dt = µI

(15)

Note that here, the calculations that go into finding R0 will be quite different
compared to what they are in the simple SIR model. Additionally, further
possibilities for building a model are essentially endless. (That’s one of the big
issues in mathematical modelling: knowing which of the millions of possible
model formulations to use.)

So, how do we use such a model in practice? We have all of these parameters
that we need in order to determine the exact dynamics of the model, so how
do we find their values? The answer is based on the available data. If we are
trying to determine how an actual disease will spread throughout an actual
population, we might have data points representing case counts, deaths and
recoveries over time in that population. This gives us a set of points that
our model should replicate at least fairly accurately, if it is a good model for
predicting future dynamics of the same disease in the same population. We can
therefore pick several sets of values for the model parameters, then simulate the
chosen parameter sets in the model, to see which set corresponds to the best fit
of the model output for the real-life data. (This can be done using least squares,
for example.)

But how do we choose the parameter values to test? One way to do this
is by random sampling. If our model doesn’t have very many parameters that
we need to determine, then we can simulate all combinations of values within
whatever ranges we think those parameters are likely to be. For instance, the
original SIR model has only two parameters, β and γ. If (for example) we
thought that β was between 2 and 3, and γ was between 0.5 and 1.5, then we
could test value pairs (β, γ) featuring regularly spaced values of β in the interval
[2, 3] (e.g. 2, 2.1, 2.2, et cetera), and likewise for γ ∈ [0.5, 1.5]. However, if we
have a lot of parameters to fit, then this will take a lot of time. One alternative
is to use what is called “Latin hypercube sampling”, which significantly cuts
down on computation time, and is easy to implement (it’s actually a bit like
sudoku). Suppose that for each parameter in our model, we have n possible
choices of values for that parameter, which we can number from 1 to n. (So,
in the SEIRD model above with parameters β, α, γ and µ, we would have
β1, . . . , βn being the potential choices for β, α1, . . . , αn being the choices for α,
and likewise for γ and µ.) A Latin hypercube sample is one in which we take
n different parameter sets overall, so that each value from 1 to n only occurs
once for each parameter. So, for instance, if we had a standard SIR model with
two parameters β and γ, and four different choices for each parameter, then one
possible Latin hypercube sample would be {(β1, γ2), (β2, γ4), (β3, γ3), (β4, γ1)}.
Another advantage of a Latin hypercube sample is that it portrays a relatively
accurate picture of the variability in parameters; sampling four points (β, γ) at
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random might lead to something like {(β3, γ3), (β3, γ4), (β4, γ3), (β4, γ4)} where
the samples are all clustered together.

But how do we know these ranges that we can choose from? The best way
to do this is do draw values directly from the literature related to the problem
that we’re trying to model. This is where knowledge of some subject besides
math comes in handy, since building a model will invariably involve reading
papers published in different fields. However, this is well beyond the scope of
this course.

3 December 3: Blood glucose model

Another field that mathematical models are often used in (that we haven’t seen
very many examples from yet) is physiology. The human body can be thought
of as a vast network of interacting processes, in which different types of cells
and chemicals are produced, perform their functions, and are consumed or de-
stroyed. You’ve seen with the SIR model that dynamical system models can be
constructed based on diagrams of boxes and arrows, in which the boxes repre-
sent different categories of people (susceptible to a disease, currently infected,
recovered from the disease, et cetera) and the arrows represent the movement
of people between categories. In physiology, similar principles are used in order
to construct mathematical models from process diagrams. The simplest form
of this, which you’ve already seen, is reaction kinetics, in which an enzyme con-
verts its substrate into a reaction product. However, many biological processes
are not as simple as one chemical being turned into another. For instance, in
the human pancreas, there exists a certain kind of cell called the β cell whose
job it is to produce insulin, but this is obviously not the same as actual β cells
being converted into insulin. In general, this means that we can still start off a
mathematical model in physiology by drawing boxes and arrows, but the boxes
and arrows in question might have different meanings than we previously used
in the SIR model.

Since the human body is so complex, most mathematical models used in
physiology cover specific processes. Models on a larger scale do exist: for in-
stance, Prof. Robert Hester at the University of Mississippi works on a very
large mathematical model called HumMod, which simulates a variety of differ-
ent physiological processes on the scale of the entire human body. The full range
of processes in that model obviously cannot be fully explained within the span
of one lecture, so I will instead focus on something on a smaller scale, namely a
model of insulin production that has been used to predict the onset of diabetes.
Since diabetes is associated with elevated blood glucose levels and decreased
insulin production, the model tracks three different variables: blood concentra-
tions of glucose and insulin, and mass of β cells (which produce insulin). This
means that the model will look like this, for G glucose concentration, I insulin
concentration, and β the mass of β cells in the pancreas:
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dG
dt = u1(G, I, β)
dI
dt = u2(G, I, β)
dβ
dt = u3(G, I, β)

(16)

In order to get the specific terms in the model, we can think all the way
back to the tank problems that we saw at the beginning of the course, where
the rate of change of the contents of a tank was defined as the rate in minus
the rate out. Likewise, the rate of change for blood glucose will be the rate at
which it is produced minus the rate at which various parts of the body uptake
it for their own use:

dG

dt
= Production−Uptake (17)

Since we are dealing with an actual physical quantity (i.e. glucose concen-
tration), it is highly important to get the units right for G, dG

dt , and the terms

defining dG
dt . (If we built all of the terms in the model correctly, but we evaluated

the model dynamics where G is on some highly implausible scale such as mil-
lions of kilograms per liter, then we wouldn’t get any results that are biologically
meaningful.) A common scale used to track glucose concentration in medical
settings is milligrams per deciliter, so we will take those to be the units for G.
Additionally, this model specifically looks at changes in fasting glucose levels
over long time scales (days to years), we will measure time t in days. Therefore,
the units for dG

dt are milligrams per deciliter per day, and therefore all terms

that make up the differential equation dG
dt must be in terms of milligrams per

deciliter per day as well.
So, what factors influence the production and uptake of glucose? Based on

experimental data, we know that these rates are based on the concentrations
of insulin and glucose itself in the blood. When insulin concentration is held
constant, increasing blood glucose causes less additional glucose to be produced
by the body, and more of the glucose in the blood to be uptaken. This means
that dG

dt might take the form a−σG, for a the net rate of glucose production when
blood glucose levels are zero, since higher levels of G put downward pressure on
G. (This is known as a “negative feedback loop”; a “positive feedback loop” is
when higher levels of one variable cause the rate of change of that variable to
increase even further.) We also know that higher blood insulin concentration
causes greater uptake of glucose; diabetes is associated with the breakdown of
this relationship, where the body’s sensitivity to insulin is low. We can thus
formulate dG

dt as follows:

dG

dt
= a− (b+ cI)G (18)

Here, b is the rate at which glucose is utilized by the body independent of
insulin concentration, and c is insulin sensitivity. By our assumptions, the units
for a need to be the same as those for dG

dt , namely milligrams per deciliter per

day. Since the term (b + cI) multiplies G, it needs to be in terms of day−1 so
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that the units line up. Therefore, b has units of day−1, and the units of c will
be whatever is needed to cancel out the units of I (see below) to get cI also on
the scale of day−1.

For the differential equation governing insulin, dI
dt , we can start from similar

assumptions. First of all, insulin concentration is often measured in thousandths
of international units of insulin per milliliter, or µUml−1. Since we already know
that we will be measuring time in days, that gives us units of µU ml−1 day−1.
We know that insulin is secreted by β cells, and that it is cleared by being
uptaken by the liver, kidneys and various insulin receptors. We can therefore
assume the following “rate in minus rate out”-style dynamics for dI

dt :

dI

dt
= Secretion− Clearance (19)

We know that β cells secrete insulin in response to high levels of blood
glucose concentration. More specifically, experimental work has shown that
the relationship between glucose concentration and the rate at which insulin is
secreted by β cells is sigmoidal. We will therefore assume that the secretion
term in dI

dt is a sigmoidal saturation function of G (which will also depend on
how many β cells there are). One relatively standard form for a sigmoidal

function is u(x) = x2

1+x2 . We will additionally assume that the maximum rate
of insulin production is some constant d, and that the half-saturation constant
that affects the shape of the sigmoidal curve is some value e. Furthermore, we
will also assume that insulin is cleared at a constant rate f . This yields the
following form for dI

dt :

dI

dt
=

dβG2

e+G2
− fI (20)

Once again, we will need our parameters to take units so that all terms in
dI
dt are measured in µU ml−1 day−1. It should be relatively obvious that f has

the units of day−1. You can figure out the units for the rest of the parameters
yourself (note that β measures the mass of existing β cells and is measured in
milligrams).

What about dβ
dt ? Since β represents the mass of β cells, we can assume that

the rates of change of β are related to β cells replicating and dying. We know
that the replication of β cells increases with blood glucose concentration, for
the same reasons that blood glucose concentration increases the rate of insulin
production by existing β cells. However, extremely high levels of blood glucose
concentration have been shown experimentally to decrease β cell replication.
We will therefore assume that the rate at which new β cells are produced is
a quadratic function of G, something like αG − γG2, making the mass of β
cells produced per unit time something like (αG− γG2)β. As for β cell death,
this can happen in two different ways, namely apoptosis (planned, or “natural”,
cell death) and necrosis (unregulated cell death due to harmful conditions).
Experimental results suggest that β cell death also varies nonlinearly with glu-
cose concentration, albeit in the opposite directions compared to replication.
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Therefore, we will assume that the death rate for β cells is another quadratic
polynomial in G, namely k− δG+ ηG2. This makes the mass of β cells that die
over a given time interval equal to (k− δG+ ηG2)β, and hence the β cell death
term will be −(k − δG + ηG2)β = (−k + δG − ηG2)β. Adding these together
gives us our equation for dβ

dt :

dβ

dt
= (−k + hG−mG2)β (21)

Therefore, we get the following for our model:
dG
dt = a− (b+ cI)G
dI
dt = dβG2

e+G2 − fI
dβ
dt = (−k + hG−mG2)β

(22)

So, what can we do with this model? For one, we can determine which
parameter values are likely to lead to normal versus diabetic blood glucose levels.
This can be demonstrated by finding fixed points in the model, which we can do
analytically. There exists one which corresponds to healthy levels of G, I and
β, one that represents a hyperglycemic state in which G is pathologically high
and I and β are both zero, and one additional fixed point between them. The
pathological equilibrium is just (G∗, I∗, β∗) = (ab , 0, 0), which can be obtained
trivially. The other two take the form (G∗, I∗, β∗) = (Gi, Ii, βi), for i = 1, 2 and
the following specific parameter values:

G1,2 =
h±

√
h2 − 4mk

2m
(23)

Ii =
a

cGi
− b

c
(24)

βi =
fIi(e+G2

i )

dG2
i

(25)

The Jacobian can be calculated for each of these points, and the stability of
them can therefore be determined. When taking parameter values correspond-
ing to experimental results, the healthy and pathological fixed points are both
stable, while the fixed point between them is a saddle point. However, if we
perturb different model parameters, we can cause bifurcations to happen. For
instance, if we decrease h, corresponding to a drop in β cell production, the
healthy fixed point and the saddle point move closer together. For a critical
value of h, these two fixed points collide and cause a fold bifurcation, annihilat-
ing one another. The effect of this is that if h falls below that critical threshold,
the only equilibrium will be the pathological equilibrium. Another important
analysis of this model has been to incorporate periodic oscillations in blood
glucose and β cell count. The original version of the model always considered
fasting levels of glucose, insulin and β cells, whereas in real life, these levels may
vary over the course of the day. Allowing different model parameters to change
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based on the human circadian rhythm caused much more complicated dynamics
to emerge, including additional ways for hyperglycemic conditions to develop.
The research on this was actually just recently performed by a friend of mine,
and the paper containing the important findings is still under review, so I can’t
really reveal too much more about it. However, there are still many more results
pertaining to diabetes waiting to be discovered, which almost certainly include
some that can be obtained by using mathematical models.

4 December 5: Spatially explicit systems of or-
dinary differential equations

Since Calculus 3 is a corequisite for this course, and this is the last lecture that
I’m giving this semester, I’m sure that you know all about partial derivatives by
now. Therefore, you might think that we can construct differential equations
using partial derivatives as well. This is correct; these are known as partial
differential equations. For instance, you might run into this one a lot:

∂u

∂t
= k

∂2u

∂x2
(26)

Or this one:

∂2u

∂t2
= k

∂2u

∂x2
(27)

As this is a class on ordinary differential equations rather than partial ones,
the analysis of these is outside the scope of it. However, it is certainly pos-
sible to represent spatial patterns within a framework of ordinary differential
equations. Instead of representing space as another variable, this is typically
done by assuming different copies of the same dynamical system, representing
the dynamics in several different locations. The state variables in these systems
then influence each other based on how the objects that they represent interact
across space. I will show you some examples of this, based on models that you
have already seen.

Let’s start with a simple one. Suppose we have a predator-prey system,
specifically the Lotka-Volterra model that we saw in class earlier:{

dN
dt = rN − αNP
dP
dt = βNP −mP

(28)

What if we have two different locations that the predators and prey both
live in? We can first extend this model to represent the predators and prey in
both locations:
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dN1

dt = r1N1 − α1N1P1

dP1

dt = β1N1P1 −m1P1

dN2

dt = r2N2 − α2N2P2

dP2

dt = β2N2P2 −m2P2

(29)

Note that I have introduced the indices 1 and 2 for the predators and prey
in locations 1 and 2. I also use these indices for the parameters which represent
conditions in each location that might differ. For example, if we think of the
prey as a herbivore, which eats grass, the local prey growth rates r1 and r2
might be different depending on which area is more suitable for grass to grow.

So far, with this setup, the predators and prey in each location (also called
a “patch”) are completely independent of each other. However, in real life, one
or both species might migrate between patches. Suppose that over some unit
of time, the proportion of prey that migrate from one patch to the other is
µN , which can be taken to be some value between 0 (no migration happens at
all) and 1 (the entire population migrates during that length of time). It could
theoretically also be greater than 1 if the time it takes for the entire population
to move between patches is less than what t is defined as. Likewise, suppose
that some proportion of predators also moves between patches over the unit of
time. We will call this µP . This allows us to rewrite our system to include the
effects of migration:

dN1

dt = r1N1 − α1N1P1 + µNN2 − µNN1

dP1

dt = β1N1P1 −m1P1 + µPP2 − µPP1

dN2

dt = r2N2 − α2N2P2 + µNN1 − µNN2

dP2

dt = β2N2P2 −m2P2 + µPP1 − µPP2

(30)

The functional form for migration that I have used here is often called “pas-
sive dispersal”, because it is essentially identical to diffusion or Brownian mo-
tion. We have also made the assumption here that the rate of migration from
Patch 1 into Patch 2 is the same as the rate of migration from Patch 2 into
Patch 1 for both species. This is not necessarily true: if a species prefers one
patch or the other, the migration rates will not be symmetric. We could then
include terms like µN1,2 , µN2,1 , µP1,2 , and µP2,1 to describe the specific rates of
migration from one given patch to another.

So, what are the effects of migration in this system? Well, consider the case
without it, but where the parameters in each patch are different. (So, assume
that r1 ̸= r2, et cetera.) In such a system, the dynamics of the predators and
prey in the two different locations will be completely different, with the two
pairs of solutions (N1, P1) and (N2, P2) each following their own trajectories.
However, increasing the migration parameters (each µ) will cause the solutions
in each patch to resemble each other more and more. The reason for this is that
we have added a term µN (N2 − N1) to N1 that subtracts a proportion of the
prey in patch 1 and adds a proportion of the prey in patch 2 (the other patch),
and so on for P1, N2 and P2. As these proportions increase towards 0.5, the
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effect becomes more and more like subtracting half of N1 from N1 and adding
back half of N2, which has a similar effect as averaging the populations in the
two patches.

We also know that populations in the Lotka-Volterra model tend to oscillate,
due to the limit cycle that exists in the (N,P )-plane. What happens when we
introduce migration? If the values of the µ parameters are high enough, the
oscillations of N1 and N2 will start to synchronize, and likewise with P1 and P2.
This happens even if their frequencies had been very different in the absence of
migration due to different parameter values in patch 1 and patch 2. In fact, the
more the solution trajectories in each patch differ from each other in terms of
shape, the higher the migration threshold above which synchrony occurs.

What if we have even more patches? (Real-life ecological networks are often
fairly large.) Then, we could assume that each species in our system can migrate
between some or all of the pairs of patches, and derive equations like this:

dNi

dt = riNi − αiNiPi +
∑
j ̸=i

µNi,j
Nj − µNj,i

Ni

dPi

dt = βiNiPi −miPi +
∑
j ̸=i

µPi,j
Pj − µPj,i

Pi

(31)

Note that some of the µ constants might be zero, if there is no migration
between one or more pairs of patches. For instance, two patches might be
separated by impassable terrain such as a mountain range or a large body of
water. Additionally, we might consider a case in which migration only happens
one way, such as populations in a river. Since the flow of the river only goes
one way, we might have something like µN1,2

= 0 but µN2,1
̸= 0. In other

words, patch 1 can send organisms to patch 2, but cannot receive organisms
from patch 2. In general, this framework allows us to construct arbitrarily
large networks with arbitrarily many patches, of which each might have its own
different parameter values corresponding to different ecological conditions. As a
result, we can model spatially complex scenarios without leaving the boundaries
of ODEs.

For another example, in a previous lecture, I alluded to the fact that the
Hodgkin-Huxley neuron model can be used to simulate the dynamics in mul-
tiple different neurons that are connected by synapses. In that version of the
Hodgkin-Huxley model, we assumed that the variables in each neuron that rep-
resented activation or inactivation of the neuron’s ion channels would not depend
on the conditions in other neurons. (In other words, their dynamics would be
local.) On the other hand, we assumed that the voltage in a given neuron would
be affected by the voltages in the neurons that it is connected to. This is be-
cause there is a biological mechanism that allows voltage to be carried from one
neuron to the next, namely the release of neurotransmitters, while there is no
biological mechanism that would cause the ion channels in one neuron to open
and close based on whether the ion channels in a different neuron are open or
closed.

As it turns out, we can actually model the effects of specific synapses and
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neurotransmitters. Synapses can either be excitatory or inhibitory: an excita-
tory synapse increases the voltage in the postsynaptic neuron, increasing the
possibility of a spike, whereas an inhibitory synapse decreases voltage in the
postsynaptic neuron and reduces the possibility of it spiking. Regardless of
whether the synapse is excitatory or inhibitory, the current produced by it
follows the same general pattern, similar to the current produced by an ion
channel:

Isyn = ḡsynf(Vm, . . .)(Vm − Vsyn) (32)

In other words, the current produced by a given synapse has a maximum
value ḡsyn, and depends on the reversal potential Vsyn of the neurotransmitter
that the synapse uses. Apart from this, synapses can get very biologically
complex (hence the function f that I have left unknown). Explaining these
would take a long time to do, and the biology involved is probably beyond the
scope of this course, so I’ll leave the problem of constructing a model of multiple
neurons as an exercise for those interested.
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